File size: 7,718 Bytes
d7d1d4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a58a46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7d1d4e
9d31b19
d7d1d4e
 
9d31b19
 
 
 
 
d7d1d4e
 
 
 
9d31b19
 
 
 
 
596ad42
9d31b19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a58a46
9d31b19
 
 
 
 
 
 
 
 
 
 
 
 
 
7a58a46
 
a237f9a
9d31b19
 
 
 
d7d1d4e
9d31b19
d7d1d4e
5005f7f
d7d1d4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8d95b7
d7d1d4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41e2747
 
d7d1d4e
 
1dd7d6b
d7d1d4e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import pandas as pd
import json
from typing import List, Literal, Optional
from pydantic import BaseModel
from dotenv import load_dotenv
from pydantic_ai import Agent
from csv_service import clean_data
from python_code_executor_service import PythonExecutor
from together_ai_instance_provider import InstanceProvider

load_dotenv()

instance_provider = InstanceProvider()

class CodeResponse(BaseModel):
    """Container for code-related responses"""
    language: str = "python"
    code: str

class ChartSpecification(BaseModel):
    """Details about requested charts"""
    image_description: str
    code: Optional[str] = None

class AnalysisOperation(BaseModel):
    """Container for a single analysis operation with its code and result"""
    code: CodeResponse
    description: str

class CsvChatResult(BaseModel):
    """Structured response for CSV-related AI interactions"""
    response_type: Literal["casual", "data_analysis", "visualization", "mixed"]
    
    # Casual chat response
    casual_response: str
    
    # Data analysis components
    analysis_operations: List[AnalysisOperation]
    
    # Visualization components
    charts: Optional[List[ChartSpecification]] = None
    
    
def get_csv_info(df: pd.DataFrame) -> dict:
    """Get metadata/info about the CSV"""
    info = {
        'num_rows': len(df),
        'num_cols': len(df.columns),
        'example_rows': df.head(2).to_dict('records'),
        'dtypes': {col: str(df[col].dtype) for col in df.columns},
        'columns': list(df.columns),
        'numeric_columns': [col for col in df.columns if pd.api.types.is_numeric_dtype(df[col])],
        'categorical_columns': [col for col in df.columns if pd.api.types.is_string_dtype(df[col])]
    }
    return info


# def get_csv_system_prompt(df: pd.DataFrame) -> str:
#     """Generate system prompt for CSV analysis"""
#     csv_info = get_csv_info(df)
    
#     prompt = f"""
# You're a CSV analysis assistant. The pandas DataFrame is loaded as 'df' - use this variable.

# CSV Info:
# - Rows: {csv_info['num_rows']}, Cols: {csv_info['num_cols']}
# - Columns: {csv_info['columns']}
# - Sample: {csv_info['example_rows']}
# - Dtypes: {csv_info['dtypes']}

# Strict Rules:
# 1. Never recreate 'df' - use the existing variable
# 2. For analysis:
#    - Include necessary imports (except pandas) and include complete code
#    - Use df directly (e.g., print(df[...].mean()))
# 3. For visualizations:
#    - Adjust font sizes, rotate labels (45° if needed), truncate for readability
#    - Figure size: (12, 6)
#    - Descriptive titles (fontsize=14)
#    - Colorblind-friendly palettes
#    - Do not use any visualization library other than matplotlib or seaborn
#    - Complete code with plt.show()
#    - Example: plt.bar(df['x'], df['y']) \n   plt.show()
# 4. For Lists and Dictionaries, return them as JSON

# Example:
# import json
# print(json.dumps(df[df['col'] == 'val'].to_dict('records'), indent=2))
# """
#     return 

def get_csv_system_prompt(df: pd.DataFrame) -> str:
    """Generate system prompt for CSV analysis"""
    csv_info = get_csv_info(df)
    
    prompt = f"""
You're a CSV analysis assistant. The pandas DataFrame is loaded as 'df' - use this variable.

CSV Info:
- Rows: {csv_info['num_rows']}, Cols: {csv_info['num_cols']}
- Columns: {csv_info['columns']}
- Sample: {csv_info['example_rows']}
- Dtypes: {csv_info['dtypes']}

Strict Rules:
1. Never recreate 'df' - use the existing variable
2. For analysis:
   - Include necessary imports (except pandas) and include complete code
   - Use df directly (e.g., print(df[...].mean()))
3. For visualizations:
   - Create the most professional, publication-quality charts possible
   - Maximize descriptive elements and detail while maintaining clarity
   - Figure size: (14, 8) for complex charts, (12, 6) for simpler ones
   - Use comprehensive titles (fontsize=16) and axis labels (fontsize=14)
   - Include informative legends (fontsize=12) when appropriate
   - Add annotations for important data points where valuable
   - Rotate x-labels (45° if needed) with fontsize=12 for readability
   - Use colorblind-friendly palettes (seaborn 'deep', 'muted', or 'colorblind')
   - Add gridlines (alpha=0.3) when they improve readability
   - Include proper margins and padding to prevent label cutoff
   - For distributions, include kernel density estimates when appropriate
   - For time series, use appropriate date formatting and markers
   - Do not use any visualization library other than matplotlib or seaborn
   - Complete code with plt.tight_layout() before plt.show()
   - Example professional chart:
     plt.figure(figsize=(14, 8))
     ax = sns.barplot(x='category', y='value', data=df, palette='muted', ci=None)
     plt.title('Detailed Analysis of Values by Category', fontsize=16, pad=20)
     plt.xlabel('Category', fontsize=14)
     plt.ylabel('Average Value', fontsize=14)
     plt.xticks(rotation=45, ha='right', fontsize=12)
     plt.yticks(fontsize=12)
     ax.grid(True, linestyle='--', alpha=0.3)
     for p in ax.patches:
         ax.annotate(f'{{p.get_height():.1f}}', 
                    (p.get_x() + p.get_width() / 2., p.get_height()), 
                    ha='center', va='center', 
                    xytext=(0, 10), 
                    textcoords='offset points',
                    fontsize=12)
     plt.tight_layout()
     plt.show()
4. For Lists, Tables and Dictionaries, always return them as JSON 

Example:
import json
print(json.dumps(df[df['col'] == 'val'].to_dict('records'), indent=2))
"""
    return prompt


def create_csv_agent(df: pd.DataFrame, max_retries: int = 1) -> Agent:
    """Create and return a CSV analysis agent with API key rotation"""
    csv_system_prompt = get_csv_system_prompt(df)
    
    for attempt in range(max_retries):
        try:
            model = instance_provider.get_instance()
            if model is None:
                raise RuntimeError("No available API instances")
            
            csv_agent = Agent(
                model=model,
                output_type=CsvChatResult,
                system_prompt=csv_system_prompt,
            )
        
            return csv_agent
            
        except Exception as e:
            api_key = instance_provider.get_api_key_for_model(model)
            if api_key:
                print(f"Error with API key (attempt {attempt + 1}): {str(e)}")
                instance_provider.report_error(api_key)
            continue
    
    raise RuntimeError(f"Failed to create agent after {max_retries} attempts")


async def query_csv_agent(csv_url: str, question: str, chat_id: str) -> str:
    """Query the CSV agent with a DataFrame and question and return formatted output"""
    
    # Get the DataFrame from the CSV URL
    df = clean_data(csv_url)
    
    # Create agent and get response
    agent = create_csv_agent(df)
    result = await agent.run(question)
    
    # Process the response through PythonExecutor
    executor = PythonExecutor(df)
    
    # Convert the raw output to CsvChatResult if needed
    if not isinstance(result.output, CsvChatResult):
        # Handle case where output needs conversion
        try:
            response_data = result.output if isinstance(result.output, dict) else json.loads(result.output)
            chat_result = CsvChatResult(**response_data)
        except Exception as e:
            raise ValueError(f"Could not parse agent response: {str(e)}")
    else:
        chat_result = result.output
        
        print("Chat Result Original Object:", chat_result)
    
    # Process and format the response
    formatted_output = await executor.process_response(chat_result, chat_id)
    
    return formatted_output