Spaces:
Runtime error
Runtime error
File size: 6,724 Bytes
d8369fc 8ee4c5d d8369fc 8ee4c5d d8369fc 8ee4c5d d8369fc 8ee4c5d d8369fc 8ee4c5d d8369fc 8ee4c5d d8369fc 8ee4c5d d8369fc 8ee4c5d d8369fc 8ee4c5d d8369fc 8ee4c5d d8369fc 8ee4c5d d8369fc 8ee4c5d d8369fc 8ee4c5d d8369fc 8ee4c5d d8369fc 8ee4c5d d8369fc 8ee4c5d d8369fc 8ee4c5d d8369fc 8ee4c5d d8369fc 8ee4c5d d8369fc 8ee4c5d d8369fc 8ee4c5d d8369fc 8ee4c5d d8369fc 8ee4c5d d8369fc 8ee4c5d d8369fc 8ee4c5d 1329cff 0b2f750 1329cff 8ee4c5d 1329cff 0b2f750 8ee4c5d 1329cff 0b2f750 1329cff 8ee4c5d 0b2f750 8ee4c5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
# -*- coding: utf-8 -*-
"""B20AI006_MNIST_Trial.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1xG500b51pcVvYpP_fgsQ2IgEPQ3TLIup
###Importing Libraries
"""
# Commented out IPython magic to ensure Python compatibility.
import os
import sys
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.profiler
from torch.utils.data import DataLoader, TensorDataset
import torchvision.utils
from torchvision import models
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torchvision.models import resnet18, ResNet18_Weights
from sklearn.manifold import TSNE
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
# %matplotlib inline
import warnings
warnings.filterwarnings('ignore')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
"""##Q1
###Loading CIFAR10
"""
# Define the transformations to apply to the images
transform_train = transforms.Compose([
transforms.ToTensor()
])
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
transform_test = transforms.Compose([
transforms.ToTensor()
])
mnist_train = dsets.MNIST(root='./', train=True,
download=True, transform=transform_train)
mnist_test = dsets.MNIST(root='./', train=False,
download=True, transform=transform_test)
train_loader = torch.utils.data.DataLoader(mnist_train, batch_size=64,
shuffle=True, num_workers=1)
test_loader = torch.utils.data.DataLoader(mnist_test, batch_size=64,
shuffle=False, num_workers=1)
"""###Defining CNN model as mentioned in question"""
import torch
import torch.nn as nn
class MNISTModel(nn.Module):
def __init__(self):
super(MNISTModel, self).__init__()
self.conv_layers = nn.Sequential(
nn.Conv2d(in_channels=1, out_channels=8, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=8, out_channels=16, kernel_size=3, stride=1,padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2),
# nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=1,padding=1),
# nn.ReLU(inplace=True),
# nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=1,padding=1),
# nn.ReLU(inplace=True),
# nn.MaxPool2d(kernel_size=2),
# nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1,padding=1),
# nn.ReLU(inplace=True),
# nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1,padding=1),
# nn.ReLU(inplace=True),
# nn.MaxPool2d(kernel_size=2)
)
self.fc_layers = nn.Sequential(
nn.Linear(in_features=3136, out_features=10)
)
def forward(self, x):
x = self.conv_layers(x)
x = torch.flatten(x, 1)
# print(x.shape)
x = self.fc_layers(x)
return x
model = MNISTModel()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
"""###Training the model"""
def train_main(train_loader, test_loader, num_epochs, optimizer, model, device='cpu'):
# Lists to store the train and test losses and accuracies
train_losses = []
test_losses = []
train_accs = []
test_accs = []
criterion = nn.CrossEntropyLoss()
model.to(device)
for epoch in range(num_epochs):
train_loss = 0
train_correct = 0
train_total = 0
for i, (images, labels) in enumerate(train_loader):
# Send inputs and targets to GPU if available
images = images.to(device)
labels = labels.to(device)
optimizer.zero_grad() # zero the gradients
outputs = model(images)
loss = criterion(outputs, labels) # calculate the loss
loss.backward() # backpropagation
optimizer.step() # update weights
train_loss += loss.item()
# calculate the training accuracy
_, predicted = torch.max(outputs.data, 1)
train_total += labels.size(0)
train_correct += (predicted == labels).sum().item()
# prof.step() ##Taking step in tensorboard profiler
# evaluate the model on the test set
test_loss = 0
test_correct = 0
test_total = 0
with torch.no_grad():
for images, labels in test_loader:
# Send inputs and targets to GPU if available
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
test_loss += loss.item()
# calculate the testing accuracy
_, predicted = torch.max(outputs.data, 1)
test_total += labels.size(0)
test_correct += (predicted == labels).sum().item()
# append the average loss and accuracy for the epoch to the lists
train_loss /= len(train_loader)
test_loss /= len(test_loader)
train_acc = 100.0 * train_correct / train_total
test_acc = 100.0 * test_correct / test_total
train_losses.append(train_loss)
test_losses.append(test_loss)
train_accs.append(train_acc)
test_accs.append(test_acc)
print('Epoch: {}, train loss: {:.4f}, test loss: {:.4f}, train accuracy: {:.2f}%, test accuracy: {:.2f}%'.format(epoch+1, train_loss, test_loss, train_acc, test_acc))
print("Saving the model")
torch.save(model, './trained_model.pt')
print("Model saved successfully")
# save the results to a text file
print("Saving training logs")
with open("./results.txt", "w") as f:
for epoch in range(num_epochs):
f.write("Epoch: {}, train loss: {:.4f}, test loss: {:.4f}, train accuracy: {:.2f}%, test accuracy: {:.2f}%\n".format(epoch+1, train_losses[epoch], test_losses[epoch], train_accs[epoch], test_accs[epoch]))
print("Logs saved")
num_epochs=1
train_main(train_loader, test_loader, num_epochs, optimizer, model, device)
"""###ResNet18 model"""
# model = models.resnet18(pretrained=False)
# num_ftrs = model.fc.in_features
# model.fc = nn.Linear(num_ftrs, 10)
# # model.to(device)
# criterion = nn.CrossEntropyLoss()
# optimizer = optim.Adam(model.parameters(), lr=0.001) |