File size: 17,496 Bytes
2d5b8e4 3d757e5 7b3b340 3d757e5 7b3b340 3d757e5 2d5b8e4 33785f7 2d5b8e4 33785f7 2d5b8e4 33785f7 2d5b8e4 33785f7 2d5b8e4 33785f7 3d757e5 f08082e 44c7b6f ff3ad52 eae282d ff3ad52 eae282d 3253b38 ff3ad52 3253b38 ff3ad52 284179e 3253b38 ff3ad52 3253b38 ff3ad52 27bebc1 ff3ad52 3253b38 3d757e5 3253b38 ff3ad52 3253b38 ba3a67a 3253b38 5e0c245 ba3a67a 3253b38 9921538 b184cb6 3253b38 ff3ad52 3253b38 2899f8f b184cb6 3253b38 ff3ad52 b184cb6 ff3ad52 b184cb6 ff3ad52 3253b38 ff3ad52 3253b38 b184cb6 6d2141a 3253b38 218e261 3253b38 555abcf 3253b38 555abcf 9921538 3229678 0d2cfad 3229678 3253b38 e670a9f 3253b38 e670a9f 3253b38 3229678 d00e1ea 3229678 d00e1ea 3229678 9921538 3c9e353 9921538 3253b38 3229678 e4c6d2d ff3ad52 e4c6d2d ff3ad52 d4701b9 ff3ad52 3253b38 ff3ad52 555abcf 552e1db 3253b38 552e1db 5021a0c 552e1db 4bccf88 7b3b340 9921538 0910ca5 7b3b340 9921538 7b3b340 9921538 7b3b340 d5b659c 7b3b340 9921538 7b3b340 33785f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
##fix overlap, remove silence, leave a tiny bit of silence
import spaces
import gradio as gr
import edge_tts
import asyncio
import tempfile
import os
import re
from pathlib import Path
from pydub.silence import detect_nonsilent
from pydub import AudioSegment
def strip_silence(audio: AudioSegment, silence_thresh=-40, min_silence_len=100, silence_padding_ms=100):
from pydub.silence import detect_nonsilent
# Detect non-silent regions
nonsilent = detect_nonsilent(audio, min_silence_len=min_silence_len, silence_thresh=silence_thresh)
# If no speech is detected, return a small silent audio (not totally empty)
if not nonsilent:
return AudioSegment.silent(duration=silence_padding_ms)
# Start and end of the first and last non-silent segments
start_trim = nonsilent[0][0]
end_trim = nonsilent[-1][1]
# Add padding before and after the trimmed audio
# Ensure the padding doesn't exceed the trimmed boundaries
start_trim = max(0, start_trim - silence_padding_ms) # Ensure no negative start
end_trim = min(len(audio), end_trim + silence_padding_ms) # Ensure end doesn't go past audio length
# Return the trimmed and padded audio
return audio[start_trim:end_trim]
def get_silence(duration_ms=1000):
# Create silent audio segment with specified parameters
silent_audio = AudioSegment.silent(
duration=duration_ms,
frame_rate=24000 # 24kHz sampling rate
)
# Set audio parameters
silent_audio = silent_audio.set_channels(1) # Mono
silent_audio = silent_audio.set_sample_width(4) # 32-bit (4 bytes per sample)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
# Export with specific bitrate and codec parameters
silent_audio.export(
tmp_file.name,
format="mp3",
bitrate="48k",
parameters=[
"-ac", "1", # Mono
"-ar", "24000", # Sample rate
"-sample_fmt", "s32", # 32-bit samples
"-codec:a", "libmp3lame" # MP3 codec
]
)
return tmp_file.name
# Get all available voices
async def get_voices():
voices = await edge_tts.list_voices()
return {f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v['ShortName'] for v in voices}
async def generate_audio_with_voice_prefix(text_segment, default_voice, rate, pitch):
"""Generates audio for a text segment, handling voice prefixes."""
current_voice_full = default_voice
current_voice_short = current_voice_full.split(" - ")[0] if current_voice_full else ""
current_rate = rate
current_pitch = pitch
processed_text = text_segment.strip()
voice1_full = "en-AU-WilliamNeural - en-AU (Male)"
voice1_short = voice1_full.split(" - ")[0]
voice1F_full ="en-GB-SoniaNeural - en-GB (Female)"
voice1F_short = voice1F_full.split(" - ")[0]
voice2_full = "en-GB-RyanNeural - en-GB (Male)"
voice2_short = voice2_full.split(" - ")[0]
voice2F_full = "en-US-JennyNeural - en-US (Female)"
voice2F_short = voice2F_full.split(" - ")[0]
voice3_full ="en-US-BrianMultilingualNeural - en-US (Male)" #good for reading
voice3_short = voice3_full.split(" - ")[0]
voice3F_full = "en-HK-YanNeural - en-HK (Female)"
voice3F_short = voice3F_full.split(" - ")[0]
voice4_full = "en-GB-ThomasNeural - en-GB (Male)"
voice4_short = voice4_full.split(" - ")[0]
voice4F_full ="en-US-EmmaNeural - en-US (Female)"
voice4F_short = voice4_full.split(" - ")[0]
voice5_full = "en-GB-RyanNeural - en-GB (Male)" #Old Man
voice5_short = voice5_full.split(" - ")[0]
voice6_full = "en-GB-MaisieNeural - en-GB (Female)" #Child
voice6_short = voice6_full.split(" - ")[0]
voice7_full = "vi-VN-HoaiMyNeural - vi-VN (Female)" #Vietnamese
voice7_short = voice7_full.split(" - ")[0]
voice8_full = "vi-VN-NamMinhNeural - vi-VN (Male)" #Vietnamese
voice8_short = voice8_full.split(" - ")[0]
voice9F_full = "de-DE-SeraphinaMultilingualNeural - de-DE (Female)" #Vietnamese
voice9F_short = voice7_full.split(" - ")[0]
voice9_full = "ko-KR-HyunsuMultilingualNeural - ko-KR (Male)" #Vietnamese
voice9_short = voice8_full.split(" - ")[0]
detect=0
if processed_text.startswith("1F"):
current_voice_short = voice1F_short
current_pitch = 25
detect=1
#processed_text = processed_text[2:].strip()
elif processed_text.startswith("2F"):
current_voice_short = voice2F_short
#processed_text = processed_text[2:].strip()
detect=1
elif processed_text.startswith("3F"):
current_voice_short = voice3F_short
#processed_text = processed_text[2:].strip()
detect=1
elif processed_text.startswith("4F"):
current_voice_short = voice4F_short
#processed_text = processed_text[2:].strip()
detect=1
elif processed_text.startswith("1M"):
current_voice_short = voice1_short
#processed_text = processed_text[2:].strip()
detect=1
elif processed_text.startswith("2M"):
current_voice_short = voice2_short
#processed_text = processed_text[2:].strip()
detect=1
elif processed_text.startswith("3M"):
current_voice_short = voice3_short
#processed_text = processed_text[2:].strip()
detect=1
elif processed_text.startswith("4M"):
current_voice_short = voice4_short
#processed_text = processed_text[2:].strip()
detect=1
elif processed_text.startswith("1O"): # Old man voice
current_voice_short = voice5_short
current_pitch = -20
current_rate = -10
#processed_text = processed_text[2:].strip()
detect=1
elif processed_text.startswith("1C"): #Child voice
current_voice_short = voice6_short
#processed_text = processed_text[2:].strip()
detect=1
elif processed_text.startswith("1V"): #Female VN
current_voice_short = voice7_short
#processed_text = processed_text[2:].strip()
detect=1
elif processed_text.startswith("2V"):
current_voice_short = voice8_short
#processed_text = processed_text[2:].strip()
detect=1
elif processed_text.startswith("3V"): #Female VN
current_voice_short = voice9F_short
current_pitch = 25
#processed_text = processed_text[2:].strip()
detect=1
elif processed_text.startswith("4V"):
current_voice_short = voice9_short
current_pitch = -20
#processed_text = processed_text[2:].strip()
detect=1
#Looking for number following prefix, which are pitch values.
#match = re.search(r'[A-Za-z]\d+', part) # Look for a letter followed by one or more digits
match = re.search(r'[A-Za-z]+\-?\d+', processed_text) # Look for a letter(s) followed by an optional '-' and digits
if match:
# Extract the prefix (e.g., '2F') and number (e.g., '-20')
prefix = ''.join([ch for ch in match.group() if ch.isalpha()]) # Extract letters (prefix)
number = int(''.join([ch for ch in match.group() if ch.isdigit() or ch == '-'])) # Extract digits (number)
current_pitch += number
# Step 2: Remove the found number from the string
new_text = re.sub(r'[A-Za-z]+\-?\d+', '', processed_text, count=1).strip() # Remove prefix and number (e.g., '2F-20')
#processed_text = new_text[2:] #cut out the prefix like 1F, 3M etc
processed_text = new_text[len(prefix):] # Dynamically remove the prefix part
else:
if detect:
processed_text = processed_text[2:]
if processed_text:
rate_str = f"{current_rate:+d}%"
pitch_str = f"{current_pitch:+d}Hz"
communicate = edge_tts.Communicate(processed_text, current_voice_short, rate=rate_str, pitch=pitch_str)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
audio_path = tmp_file.name
await communicate.save(audio_path)
# Load the audio from file
audio = AudioSegment.from_mp3(audio_path)
# Strip silence at start and end
audio = strip_silence(audio, silence_thresh=-40, min_silence_len=100)
# Save the stripped version back to file
stripped_path = tempfile.mktemp(suffix=".mp3")
audio.export(stripped_path, format="mp3")
return stripped_path
return None
async def process_transcript_line(line, default_voice, rate, pitch):
"""Processes a single transcript line with HH:MM:SS.milliseconds timestamp and quoted text segments."""
match = re.match(r'(\d{2}):(\d{2}):(\d{2}),(\d{3})\s+(.*)', line) # Modified timestamp regex
if match:
hours, minutes, seconds, milliseconds, text_parts = match.groups()
start_time_ms = (
int(hours) * 3600000 +
int(minutes) * 60000 +
int(seconds) * 1000 +
int(milliseconds)
)
audio_segments = []
split_parts = re.split(r'(")', text_parts) # Split by quote marks, keeping the quotes
process_next = False
for part in split_parts:
if part == '"':
process_next = not process_next
continue
if process_next and part.strip():
audio_path = await generate_audio_with_voice_prefix(part, default_voice, rate, pitch)
if audio_path:
audio_segments.append(audio_path)
elif not process_next and part.strip():
audio_path = await generate_audio_with_voice_prefix(part, default_voice, rate, pitch) # Process unquoted text with default voice
if audio_path:
audio_segments.append(audio_path)
return start_time_ms, audio_segments
return None, None
async def transcript_to_speech(transcript_text, voice, rate, pitch):
if not transcript_text.strip():
return None, gr.Warning("Please enter transcript text.")
if not voice:
return None, gr.Warning("Please select a voice.")
lines = transcript_text.strip().split('\n')
timed_audio_segments = []
max_end_time_ms = 0
previous_end_time_ms = 0
i = 0
while i < len(lines):
start_time, audio_paths = await process_transcript_line(lines[i], voice, rate, pitch)
if start_time is not None and audio_paths:
combined_line_audio = AudioSegment.empty()
for path in audio_paths:
try:
audio = AudioSegment.from_mp3(path)
#audio = strip_silence(audio, silence_thresh=-40, min_silence_len=100)
combined_line_audio += audio
#combined_line_audio = strip_silence(combined_line_audio, silence_thresh=-40, min_silence_len=100)
os.remove(path)
except FileNotFoundError:
print(f"Warning: Audio file not found: {path}")
current_audio_duration = len(combined_line_audio)
intended_start_time = start_time
# Check duration until the next timestamp
if i + 1 < len(lines):
next_start_time_line = lines[i+1]
next_start_time_match = re.match(r'(\d{2}):(\d{2}):(\d{2}),(\d{3})\s+.*', next_start_time_line)
if next_start_time_match:
next_h, next_m, next_s, next_ms = next_start_time_match.groups()
next_start_time_ms = (int(next_h) * 3600000 + int(next_m) * 60000 + int(next_s) * 1000 + int(next_ms))
duration_to_next = next_start_time_ms - start_time
else:
duration_to_next = float('inf') # Or some other large value
if current_audio_duration > duration_to_next:
# Hold and append audio from subsequent lines
j = i + 1
while j < len(lines):
next_start_time, next_audio_paths = await process_transcript_line(lines[j], voice, rate, pitch)
if next_start_time is not None and next_audio_paths:
for next_path in next_audio_paths:
try:
next_audio = AudioSegment.from_mp3(next_path)
combined_line_audio += next_audio
os.remove(next_path)
except FileNotFoundError:
print(f"Warning: Audio file not found: {next_path}")
current_audio_duration = len(combined_line_audio)
#check duration to the next timestamp.
if j + 1 < len(lines):
next_start_time_line_2 = lines[j+1]
next_start_time_match_2 = re.match(r'(\d{2}):(\d{2}):(\d{2}),(\d{3})\s+.*', next_start_time_line_2)
if next_start_time_match_2:
next_h_2, next_m_2, next_s_2, next_ms_2 = next_start_time_match_2.groups()
next_start_time_ms_2 = (int(next_h_2) * 3600000 + int(next_m_2) * 60000 + int(next_s_2) * 1000 + int(next_ms_2))
duration_to_next_2 = next_start_time_ms_2 - start_time
if current_audio_duration <= duration_to_next_2:
break
else:
break
j += 1
else:
break
i = j #update i to j
timed_audio_segments.append({'start': intended_start_time, 'audio': combined_line_audio})
previous_end_time_ms = max(previous_end_time_ms, intended_start_time + current_audio_duration)
max_end_time_ms = max(max_end_time_ms, previous_end_time_ms)
elif audio_paths:
for path in audio_paths:
try:
os.remove(path)
except FileNotFoundError:
pass # Clean up even if no timestamp
i += 1
if not timed_audio_segments:
return None, "No processable audio segments found."
final_audio = AudioSegment.silent(duration=max_end_time_ms, frame_rate=24000)
for segment in timed_audio_segments:
final_audio = final_audio.overlay(segment['audio'], position=segment['start'])
combined_audio_path = tempfile.mktemp(suffix=".mp3")
final_audio.export(combined_audio_path, format="mp3")
return combined_audio_path, None
@spaces.GPU
def tts_interface(transcript, voice, rate, pitch):
audio, warning = asyncio.run(transcript_to_speech(transcript, voice, rate, pitch))
return audio, warning
async def create_demo():
voices = await get_voices()
default_voice = "en-US-AndrewMultilingualNeural - en-US (Male)"
description = """
Process timestamped text (HH:MM:SS,milliseconds) with voice changes within quotes.
Format: `HH:MM:SS,milliseconds "VoicePrefix Text" more text "1F Different Voice"
Example:
```
00:00:00,000 "This is the default voice." more default. "1F Now a female voice." and back to default.
00:00:05,000 "1C Yes," said the child, "it is fun!"
```
***************************************************************************************************
1M = en-AU-WilliamNeural - en-AU (Male)
1F = en-GB-SoniaNeural - en-GB (Female)
2M = en-GB-RyanNeural - en-GB (Male)
2F = en-US-JennyNeural - en-US (Female)
3M = en-US-BrianMultilingualNeural - en-US (Male)
3F = en-HK-YanNeural - en-HK (Female)
4M = en-GB-ThomasNeural - en-GB (Male)
4F = en-US-EmmaNeural - en-US (Female)
1O = en-GB-RyanNeural - en-GB (Male) # Old Man
1C = en-GB-MaisieNeural - en-GB (Female) # Child
1V = vi-VN-HoaiMyNeural - vi-VN (Female) # Vietnamese (Female)
2V = vi-VN-NamMinhNeural - vi-VN (Male) # Vietnamese (Male)
3V = vi-VN-HoaiMyNeural - vi-VN (Female) # Vietnamese (Female)
4V = vi-VN-NamMinhNeural - vi-VN (Male) # Vietnamese (Male)
****************************************************************************************************
"""
demo = gr.Interface(
fn=tts_interface,
inputs=[
gr.Textbox(label="Timestamped Text with Voice Changes", lines=10, placeholder='00:00:00,000 "Text" more text "1F Different Voice"'),
gr.Dropdown(choices=[""] + list(voices.keys()), label="Select Default Voice", value=default_voice),
gr.Slider(minimum=-50, maximum=50, value=0, label="Speech Rate Adjustment (%)", step=1),
gr.Slider(minimum=-50, maximum=50, value=0, label="Pitch Adjustment (Hz)", step=1) # Removed the duplicate value argument
],
outputs=[
gr.Audio(label="Generated Audio", type="filepath"),
gr.Markdown(label="Warning", visible=False)
],
title="TTS with HH:MM:SS,milliseconds and In-Quote Voice Switching",
description=description,
analytics_enabled=False,
allow_flagging=False
)
return demo
if __name__ == "__main__":
demo = asyncio.run(create_demo())
demo.launch()
|