Spaces:
Runtime error
Runtime error
import gradio as gr | |
import datasets | |
# Load NVIDIA’s Llama-Nemotron dataset (public) | |
dataset = datasets.load_dataset("nvidia/Llama-Nemotron-Post-Training-Dataset-v1", split="train") | |
# Function to find relevant info from the dataset | |
def search_dataset(query): | |
results = [] | |
for data in dataset.shuffle(seed=42).select(range(10)): # Search 10 random samples | |
if query.lower() in data["text"].lower(): | |
results.append(data["text"]) | |
return "\n\n".join(results) if results else "No relevant data found." | |
# Function to generate responses | |
def chat(user_message): | |
context = search_dataset(user_message) # Get relevant dataset content | |
system_prompt = "You are Jellyfish AI, an advanced assistant with knowledge from NVIDIA’s dataset." | |
return f"{system_prompt}\nContext: {context}\nUser: {user_message}\nJellyfish AI:" | |
# Gradio UI | |
with gr.Blocks(fill_height=True) as demo: | |
with gr.Sidebar(): | |
gr.Markdown("# Jellyfish AI 2025 1.0.0") | |
gr.Markdown("Powered by NVIDIA’s Llama-Nemotron dataset. No external API needed!") | |
gr.Markdown("### Chat with Jellyfish AI") | |
user_input = gr.Textbox(label="Your Message") | |
output = gr.Textbox(label="Jellyfish AI's Response", interactive=False) | |
chat_button = gr.Button("Send") | |
chat_button.click(chat, inputs=user_input, outputs=output) | |
demo.launch() | |