Spaces:
Runtime error
Runtime error
import datetime | |
import os | |
import copy | |
from dataclasses import asdict, dataclass | |
from functools import lru_cache | |
from json import JSONDecodeError | |
from typing import Any, Dict, List, Optional, Union | |
from huggingface_hub.utils import GatedRepoError | |
import gradio as gr | |
from requests.exceptions import HTTPError | |
import requests | |
from diskcache import Cache | |
from huggingface_hub import ( | |
HfApi, | |
hf_hub_url, | |
list_repo_commits, | |
logging, | |
model_info, | |
) | |
from tqdm.auto import tqdm | |
from tqdm.contrib.concurrent import thread_map | |
import backoff | |
from huggingface_hub.utils import EntryNotFoundError, disable_progress_bars | |
import httpx | |
import orjson | |
import httpx | |
from functools import lru_cache | |
from sys import platform | |
CACHE_DIR = "./cache" if platform == "darwin" else "/data/" | |
disable_progress_bars() | |
logging.set_verbosity_error() | |
token = os.getenv("HF_TOKEN") | |
cache = Cache( | |
CACHE_DIR, eviction_policy="least-frequently-used", size_limit=4e9 | |
) # 4gb in bytes | |
def get_model_labels(model): | |
try: | |
url = hf_hub_url(repo_id=model, filename="config.json") | |
return list(requests.get(url).json()["label2id"].keys()) | |
except (KeyError, JSONDecodeError, AttributeError): | |
return None | |
class EngagementStats: | |
likes: int | |
downloads: int | |
created_at: datetime.datetime | |
def _get_engagement_stats(hub_id): | |
api = HfApi(token=token) | |
repo = api.repo_info(hub_id) | |
return EngagementStats( | |
likes=repo.likes, | |
downloads=repo.downloads, | |
created_at=list_repo_commits(hub_id, repo_type="model")[-1].created_at, | |
) | |
def _try_load_model_card(hub_id): | |
try: | |
url = hf_hub_url( | |
repo_id=hub_id, filename="README.md" | |
) # We grab card this way rather than via client library to improve performance | |
card_text = httpx.get(url).text | |
length = len(card_text) | |
except EntryNotFoundError: | |
card_text = None | |
length = None | |
except ( | |
GatedRepoError | |
): # TODO return different values to reflect gating rather than no card | |
card_text = None | |
length = None | |
return card_text, length | |
def _try_parse_card_data(hub_id): | |
data = {} | |
keys = ["license", "language", "datasets", "tags"] | |
for key in keys: | |
try: | |
value = model_info(hub_id, token=token).cardData[key] | |
data[key] = value | |
except (KeyError, AttributeError): | |
data[key] = None | |
return data | |
class ModelMetadata: | |
hub_id: str | |
tags: Optional[List[str]] | |
license: Optional[str] | |
library_name: Optional[str] | |
datasets: Optional[List[str]] | |
pipeline_tag: Optional[str] | |
labels: Optional[List[str]] | |
languages: Optional[Union[str, List[str]]] | |
engagement_stats: Optional[EngagementStats] = None | |
model_card_text: Optional[str] = None | |
model_card_length: Optional[int] = None | |
def from_hub(cls, hub_id): | |
try: | |
model = model_info(hub_id) | |
except (GatedRepoError, HTTPError): | |
return None # TODO catch gated repos and handle properly | |
card_text, length = _try_load_model_card(hub_id) | |
data = _try_parse_card_data(hub_id) | |
try: | |
library_name = model.library_name | |
except AttributeError: | |
library_name = None | |
try: | |
pipeline_tag = model.pipeline_tag | |
except AttributeError: | |
pipeline_tag = None | |
return ModelMetadata( | |
hub_id=hub_id, | |
languages=data["language"], | |
tags=data["tags"], | |
license=data["license"], | |
library_name=library_name, | |
datasets=data["datasets"], | |
pipeline_tag=pipeline_tag, | |
labels=get_model_labels(hub_id), | |
engagement_stats=_get_engagement_stats(hub_id), | |
model_card_text=card_text, | |
model_card_length=length, | |
) | |
COMMON_SCORES = { | |
"license": { | |
"required": True, | |
"score": 2, | |
"missing_recommendation": ( | |
"You have not added a license to your models metadata" | |
), | |
}, | |
"datasets": { | |
"required": False, | |
"score": 1, | |
"missing_recommendation": ( | |
"You have not added any datasets to your models metadata" | |
), | |
}, | |
"model_card_text": { | |
"required": True, | |
"score": 3, | |
"missing_recommendation": """You haven't created a model card for your model. It is strongly recommended to have a model card for your model. \nYou can create for your model by clicking [here](https://huggingface.co/HUB_ID/edit/main/README.md)""", | |
}, | |
"tags": { | |
"required": False, | |
"score": 2, | |
"missing_recommendation": ( | |
"You don't have any tags defined in your model metadata. Tags can help" | |
" people find relevant models on the Hub. You can create for your model by" | |
" clicking [here](https://huggingface.co/HUB_ID/edit/main/README.md)" | |
), | |
}, | |
} | |
TASK_TYPES_WITH_LANGUAGES = { | |
"text-classification", | |
"token-classification", | |
"table-question-answering", | |
"question-answering", | |
"zero-shot-classification", | |
"translation", | |
"summarization", | |
"text-generation", | |
"text2text-generation", | |
"fill-mask", | |
"sentence-similarity", | |
"text-to-speech", | |
"automatic-speech-recognition", | |
"text-to-image", | |
"image-to-text", | |
"visual-question-answering", | |
"document-question-answering", | |
} | |
LABELS_REQUIRED_TASKS = { | |
"text-classification", | |
"token-classification", | |
"object-detection", | |
"audio-classification", | |
"image-classification", | |
"tabular-classification", | |
} | |
ALL_PIPELINES = { | |
"audio-classification", | |
"audio-to-audio", | |
"automatic-speech-recognition", | |
"conversational", | |
"depth-estimation", | |
"document-question-answering", | |
"feature-extraction", | |
"fill-mask", | |
"graph-ml", | |
"image-classification", | |
"image-segmentation", | |
"image-to-image", | |
"image-to-text", | |
"object-detection", | |
"question-answering", | |
"reinforcement-learning", | |
"robotics", | |
"sentence-similarity", | |
"summarization", | |
"table-question-answering", | |
"tabular-classification", | |
"tabular-regression", | |
"text-classification", | |
"text-generation", | |
"text-to-image", | |
"text-to-speech", | |
"text-to-video", | |
"text2text-generation", | |
"token-classification", | |
"translation", | |
"unconditional-image-generation", | |
"video-classification", | |
"visual-question-answering", | |
"voice-activity-detection", | |
"zero-shot-classification", | |
"zero-shot-image-classification", | |
} | |
def generate_task_scores_dict(): | |
task_scores = {} | |
for task in ALL_PIPELINES: | |
task_dict = copy.deepcopy(COMMON_SCORES) | |
if task in TASK_TYPES_WITH_LANGUAGES: | |
task_dict = { | |
**task_dict, | |
**{ | |
"languages": { | |
"required": True, | |
"score": 2, | |
"missing_recommendation": ( | |
"You haven't defined any languages in your metadata. This" | |
f" is usually recommend for {task} task" | |
), | |
} | |
}, | |
} | |
if task in LABELS_REQUIRED_TASKS: | |
task_dict = { | |
**task_dict, | |
**{ | |
"labels": { | |
"required": True, | |
"score": 2, | |
"missing_recommendation": ( | |
"You haven't defined any labels in the config.json file" | |
f" these are usually recommended for {task}" | |
), | |
} | |
}, | |
} | |
max_score = sum(value["score"] for value in task_dict.values()) | |
task_dict["_max_score"] = max_score | |
task_scores[task] = task_dict | |
return task_scores | |
def generate_common_scores(): | |
GENERIC_SCORES = copy.deepcopy(COMMON_SCORES) | |
GENERIC_SCORES["_max_score"] = sum( | |
value["score"] for value in GENERIC_SCORES.values() | |
) | |
return GENERIC_SCORES | |
SCORES = generate_task_scores_dict() | |
GENERIC_SCORES = generate_common_scores() | |
# expires after 3 days | |
def _basic_check(hub_id): | |
data = ModelMetadata.from_hub(hub_id) | |
score = 0 | |
if data is None: | |
return None | |
to_fix = {} | |
if task := data.pipeline_tag: | |
task_scores = SCORES[task] | |
data_dict = asdict(data) | |
for k, v in task_scores.items(): | |
if k.startswith("_"): | |
continue | |
if data_dict[k] is None: | |
to_fix[k] = task_scores[k]["missing_recommendation"].replace( | |
"HUB_ID", hub_id | |
) | |
if data_dict[k] is not None: | |
score += v["score"] | |
max_score = task_scores["_max_score"] | |
score = score / max_score | |
( | |
f"Your model's metadata score is {round(score*100)}% based on suggested" | |
f" metadata for {task}. \n" | |
) | |
if to_fix: | |
recommendations = ( | |
"Here are some suggestions to improve your model's metadata for" | |
f" {task}: \n" | |
) | |
for v in to_fix.values(): | |
recommendations += f"\n- {v}" | |
data_dict["recommendations"] = recommendations | |
data_dict["score"] = score * 100 | |
else: | |
data_dict = asdict(data) | |
for k, v in GENERIC_SCORES.items(): | |
if k.startswith("_"): | |
continue | |
if data_dict[k] is None: | |
to_fix[k] = GENERIC_SCORES[k]["missing_recommendation"].replace( | |
"HUB_ID", hub_id | |
) | |
if data_dict[k] is not None: | |
score += v["score"] | |
score = score / GENERIC_SCORES["_max_score"] | |
data_dict["score"] = max( | |
0, (score / 2) * 100 | |
) # TODO currently setting a manual penalty for not having a task | |
return orjson.dumps(data_dict) | |
def basic_check(hub_id): | |
return _basic_check(hub_id) | |
def create_query_url(query, skip=0): | |
return f"https://huggingface.co/api/search/full-text?q={query}&limit=100&skip={skip}&type=model" | |
# expires after 3 days | |
def get_results(query) -> Dict[Any, Any]: | |
url = create_query_url(query) | |
r = httpx.get(url) | |
return r.json() | |
# result = { | |
# "repoId": "621ffdc036468d709f175eb5", | |
# "repoOwnerId": "60d099234330bad169e611f0", | |
# "isPrivate": False, | |
# "type": "model", | |
# "likes": 0, | |
# "isReadmeFile": True, | |
# "readmeStartLine": 8, | |
# "updatedAt": 1687806057107, | |
# "repoName": "hate_speech_en", | |
# "repoOwner": "IMSyPP", | |
# "tags": "pytorch, bert, text-classification, en, transformers, license:mit, has_space", | |
# "name": "IMSyPP/hate_speech_en", | |
# "fileName": "README.md", | |
# "formatted": { | |
# "repoName": [{"text": "hate_speech_en", "type": "text"}], | |
# "repoOwner": [{"text": "IMSyPP", "type": "text"}], | |
# "fileContent": [ | |
# {"text": "\n# ", "type": "text"}, | |
# {"text": "Hate", "type": "highlight"}, | |
# {"text": " ", "type": "text"}, | |
# {"text": "Speech", "type": "highlight"}, | |
# { | |
# "text": " Classifier for Social Media Content in English Language\n\nA monolingual model for ", | |
# "type": "text", | |
# }, | |
# {"text": "hate", "type": "highlight"}, | |
# {"text": " ", "type": "text"}, | |
# {"text": "speech", "type": "highlight"}, | |
# { | |
# "text": " classification of social media content in English language. The model was trained on 103190 YouTube comments and tested on an independent test set of 20554 YouTube comments. It is based on English BERT base pre-trained language model.\n\n## Tokenizer\n\nDuring training the text was preprocessed using the original English BERT base tokenizer. We suggest the same tokenizer is used for inference.\n\n## Model output\n\nThe model classifies each input into one of four distinct classes:\n* 0 - acceptable\n* 1 - inappropriate\n* 2 - offensive\n* 3 - violent", | |
# "type": "text", | |
# }, | |
# ], | |
# "tags": [ | |
# { | |
# "text": "pytorch, bert, text-classification, en, transformers, license:mit, has_space", | |
# "type": "text", | |
# } | |
# ], | |
# "name": [{"text": "IMSyPP/hate_speech_en", "type": "text"}], | |
# "fileName": [{"text": "README.md", "type": "text"}], | |
# }, | |
# "authorData": { | |
# "avatarUrl": "https://aeiljuispo.cloudimg.io/v7/https://s3.amazonaws.com/moonup/production/uploads/1624284535629-60d08803565dd1d0867f7a37.png?w=200&h=200&f=face", | |
# "fullname": "IMSyPP EU REC AG project 875263 - Innovative Monitoring Systems and Prevention Policies of Online Hate Speech", | |
# "name": "IMSyPP", | |
# "type": "org", | |
# "isHf": False, | |
# }, | |
# } | |
def parse_single_result(result): | |
name, filename = result["name"], result["fileName"] | |
search_result_file_url = hf_hub_url(name, filename) | |
repo_hub_url = f"https://huggingface.co/{name}" | |
score = _basic_check(name) | |
if score is None: | |
return None | |
score = orjson.loads(score) | |
return { | |
"name": name, | |
"search_result_file_url": search_result_file_url, | |
"repo_hub_url": repo_hub_url, | |
"metadata_score": score["score"], | |
"model_card_length": score["model_card_length"], | |
"is_licensed": bool(score["license"]), | |
# "metadata_report": score | |
} | |
def filter_search_results( | |
results: List[Dict[Any, Any]], min_score=None, min_model_card_length=None | |
): # TODO make code more intuitive | |
results = thread_map(parse_single_result, results) | |
for i, parsed_result in tqdm(enumerate(results)): | |
# parsed_result = parse_single_result(result) | |
if parsed_result is None: | |
continue | |
if ( | |
min_score is None | |
and min_model_card_length is not None | |
and parsed_result["model_card_length"] > min_model_card_length | |
or min_score is None | |
and min_model_card_length is None | |
): | |
yield parsed_result | |
elif min_score is not None: | |
if parsed_result["metadata_score"] <= min_score: | |
continue | |
if ( | |
min_model_card_length is not None | |
and parsed_result["model_card_length"] > min_model_card_length | |
or min_model_card_length is None | |
): | |
parsed_result["original_position"] = i | |
yield parsed_result | |
def sort_search_results(filtered_search_results): | |
return sorted( | |
list(filtered_search_results), | |
key=lambda x: (x["metadata_score"], x["original_position"]), | |
reverse=True, | |
) | |
def find_context(text, query, window_size): | |
# Split the text into words | |
words = text.split() | |
# Find the index of the query token | |
try: | |
index = words.index(query) | |
# Get the start and end indices of the context window | |
start = max(0, index - window_size) | |
end = min(len(words), index + window_size + 1) | |
return " ".join(words[start:end]) | |
except ValueError: | |
return " ".join(words[:window_size]) | |
# single_result[ | |
# "text" | |
# ] = "lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua." | |
# results = [single_result] * 3 | |
def create_markdown(results): | |
rows = [] | |
for result in results: | |
row = f"""# [{result['name']}]({result['repo_hub_url']}) | |
| Metadata Quality Score | Model card length | Licensed | | |
|------------------------|-------------------|----------| | |
| {result['metadata_score']:.0f}% | {result['model_card_length']} | {"✅" if result['is_licensed'] else "❌"} | | |
\n | |
*{result['text']}* | |
<hr> | |
\n""" | |
rows.append(row) | |
return "\n".join(rows) | |
def get_result_card_snippet(result): | |
try: | |
result_text = httpx.get(result["search_result_file_url"]).text | |
result["text"] = find_context(result_text, query, 100) | |
except httpx.ConnectError: | |
result["text"] = "Could not load model card" | |
return result | |
def _search_hub( | |
query: str, | |
min_score: Optional[int] = None, | |
min_model_card_length: Optional[int] = None, | |
): | |
results = get_results(query) | |
print(f"Found {len(results['hits'])} results") | |
results = results["hits"] | |
number_original_results = len(results) | |
filtered_results = filter_search_results( | |
results, min_score=min_score, min_model_card_length=min_model_card_length | |
) | |
filtered_results = sort_search_results(filtered_results) | |
# final_results = [] | |
# for result in filtered_results: | |
# result_text = httpx.get(result["search_result_file_url"]).text | |
# result["text"] = find_context(result_text, query, 100) | |
# final_results.append(result) | |
final_results = thread_map(get_result_card_snippet, filtered_results) | |
percent_of_original = round( | |
len(final_results) / number_original_results * 100, ndigits=0 | |
) | |
filtered_vs_og = f""" | |
| Number of original results | Number of results after filtering | Percentage of results after filtering | | |
| -------------------------- | --------------------------------- | -------------------------------------------- | | |
| {number_original_results} | {len(final_results)} | {percent_of_original}% | | |
""" | |
print(final_results) | |
return filtered_vs_og, create_markdown(final_results) | |
def search_hub(query: str, min_score=None, min_model_card_length=None): | |
return _search_hub(query, min_score, min_model_card_length) | |
with gr.Blocks() as demo: | |
gr.Markdown("# 🤗 Hub model search with metadata quality filters") | |
with gr.Row(): | |
with gr.Column(): | |
query = gr.Textbox("x-ray", label="Search query") | |
with gr.Column(): | |
button = gr.Button("Search") | |
with gr.Row(): | |
# gr.Checkbox(False, label="Must have licence?") | |
mim_model_card_length = gr.Number( | |
None, label="Minimum model card length" | |
) | |
min_metadata_score = gr.Slider(0, label="Minimum metadata score") | |
filter_results = gr.Markdown("Filter results vs original search") | |
results_markdown = gr.Markdown("Search results") | |
button.click( | |
search_hub, | |
[query, min_metadata_score, mim_model_card_length], | |
[filter_results, results_markdown], | |
) | |
demo.queue(concurrency_count=32) | |
demo.launch() | |
# with gr.Blocks() as demo: | |
# gr.Markdown( | |
# """ | |
# # Model Metadata Checker | |
# This app will check your model's metadata for a few common issues.""" | |
# ) | |
# with gr.Row(): | |
# text = gr.Text(label="Model ID") | |
# button = gr.Button(label="Check", type="submit") | |
# with gr.Row(): | |
# gr.Markdown("Results") | |
# markdown = gr.JSON() | |
# button.click(_basic_check, text, markdown) | |
# demo.queue(concurrency_count=32) | |
# demo.launch() | |
# gr.Interface(fn=basic_check, inputs="text", outputs="markdown").launch(debug=True) | |