MetaRefine / app.py
davanstrien's picture
davanstrien HF staff
draft
fd1a723
raw
history blame
19.7 kB
import datetime
import os
import copy
from dataclasses import asdict, dataclass
from functools import lru_cache
from json import JSONDecodeError
from typing import Any, Dict, List, Optional, Union
from huggingface_hub.utils import GatedRepoError
import gradio as gr
from requests.exceptions import HTTPError
import requests
from diskcache import Cache
from huggingface_hub import (
HfApi,
hf_hub_url,
list_repo_commits,
logging,
model_info,
)
from tqdm.auto import tqdm
from tqdm.contrib.concurrent import thread_map
import backoff
from huggingface_hub.utils import EntryNotFoundError, disable_progress_bars
import httpx
import orjson
import httpx
from functools import lru_cache
from sys import platform
CACHE_DIR = "./cache" if platform == "darwin" else "/data/"
disable_progress_bars()
logging.set_verbosity_error()
token = os.getenv("HF_TOKEN")
cache = Cache(
CACHE_DIR, eviction_policy="least-frequently-used", size_limit=4e9
) # 4gb in bytes
def get_model_labels(model):
try:
url = hf_hub_url(repo_id=model, filename="config.json")
return list(requests.get(url).json()["label2id"].keys())
except (KeyError, JSONDecodeError, AttributeError):
return None
@dataclass
class EngagementStats:
likes: int
downloads: int
created_at: datetime.datetime
def _get_engagement_stats(hub_id):
api = HfApi(token=token)
repo = api.repo_info(hub_id)
return EngagementStats(
likes=repo.likes,
downloads=repo.downloads,
created_at=list_repo_commits(hub_id, repo_type="model")[-1].created_at,
)
def _try_load_model_card(hub_id):
try:
url = hf_hub_url(
repo_id=hub_id, filename="README.md"
) # We grab card this way rather than via client library to improve performance
card_text = httpx.get(url).text
length = len(card_text)
except EntryNotFoundError:
card_text = None
length = None
except (
GatedRepoError
): # TODO return different values to reflect gating rather than no card
card_text = None
length = None
return card_text, length
def _try_parse_card_data(hub_id):
data = {}
keys = ["license", "language", "datasets", "tags"]
for key in keys:
try:
value = model_info(hub_id, token=token).cardData[key]
data[key] = value
except (KeyError, AttributeError):
data[key] = None
return data
@dataclass
class ModelMetadata:
hub_id: str
tags: Optional[List[str]]
license: Optional[str]
library_name: Optional[str]
datasets: Optional[List[str]]
pipeline_tag: Optional[str]
labels: Optional[List[str]]
languages: Optional[Union[str, List[str]]]
engagement_stats: Optional[EngagementStats] = None
model_card_text: Optional[str] = None
model_card_length: Optional[int] = None
@classmethod
def from_hub(cls, hub_id):
try:
model = model_info(hub_id)
except (GatedRepoError, HTTPError):
return None # TODO catch gated repos and handle properly
card_text, length = _try_load_model_card(hub_id)
data = _try_parse_card_data(hub_id)
try:
library_name = model.library_name
except AttributeError:
library_name = None
try:
pipeline_tag = model.pipeline_tag
except AttributeError:
pipeline_tag = None
return ModelMetadata(
hub_id=hub_id,
languages=data["language"],
tags=data["tags"],
license=data["license"],
library_name=library_name,
datasets=data["datasets"],
pipeline_tag=pipeline_tag,
labels=get_model_labels(hub_id),
engagement_stats=_get_engagement_stats(hub_id),
model_card_text=card_text,
model_card_length=length,
)
COMMON_SCORES = {
"license": {
"required": True,
"score": 2,
"missing_recommendation": (
"You have not added a license to your models metadata"
),
},
"datasets": {
"required": False,
"score": 1,
"missing_recommendation": (
"You have not added any datasets to your models metadata"
),
},
"model_card_text": {
"required": True,
"score": 3,
"missing_recommendation": """You haven't created a model card for your model. It is strongly recommended to have a model card for your model. \nYou can create for your model by clicking [here](https://huggingface.co/HUB_ID/edit/main/README.md)""",
},
"tags": {
"required": False,
"score": 2,
"missing_recommendation": (
"You don't have any tags defined in your model metadata. Tags can help"
" people find relevant models on the Hub. You can create for your model by"
" clicking [here](https://huggingface.co/HUB_ID/edit/main/README.md)"
),
},
}
TASK_TYPES_WITH_LANGUAGES = {
"text-classification",
"token-classification",
"table-question-answering",
"question-answering",
"zero-shot-classification",
"translation",
"summarization",
"text-generation",
"text2text-generation",
"fill-mask",
"sentence-similarity",
"text-to-speech",
"automatic-speech-recognition",
"text-to-image",
"image-to-text",
"visual-question-answering",
"document-question-answering",
}
LABELS_REQUIRED_TASKS = {
"text-classification",
"token-classification",
"object-detection",
"audio-classification",
"image-classification",
"tabular-classification",
}
ALL_PIPELINES = {
"audio-classification",
"audio-to-audio",
"automatic-speech-recognition",
"conversational",
"depth-estimation",
"document-question-answering",
"feature-extraction",
"fill-mask",
"graph-ml",
"image-classification",
"image-segmentation",
"image-to-image",
"image-to-text",
"object-detection",
"question-answering",
"reinforcement-learning",
"robotics",
"sentence-similarity",
"summarization",
"table-question-answering",
"tabular-classification",
"tabular-regression",
"text-classification",
"text-generation",
"text-to-image",
"text-to-speech",
"text-to-video",
"text2text-generation",
"token-classification",
"translation",
"unconditional-image-generation",
"video-classification",
"visual-question-answering",
"voice-activity-detection",
"zero-shot-classification",
"zero-shot-image-classification",
}
@lru_cache(maxsize=None)
def generate_task_scores_dict():
task_scores = {}
for task in ALL_PIPELINES:
task_dict = copy.deepcopy(COMMON_SCORES)
if task in TASK_TYPES_WITH_LANGUAGES:
task_dict = {
**task_dict,
**{
"languages": {
"required": True,
"score": 2,
"missing_recommendation": (
"You haven't defined any languages in your metadata. This"
f" is usually recommend for {task} task"
),
}
},
}
if task in LABELS_REQUIRED_TASKS:
task_dict = {
**task_dict,
**{
"labels": {
"required": True,
"score": 2,
"missing_recommendation": (
"You haven't defined any labels in the config.json file"
f" these are usually recommended for {task}"
),
}
},
}
max_score = sum(value["score"] for value in task_dict.values())
task_dict["_max_score"] = max_score
task_scores[task] = task_dict
return task_scores
@lru_cache(maxsize=None)
def generate_common_scores():
GENERIC_SCORES = copy.deepcopy(COMMON_SCORES)
GENERIC_SCORES["_max_score"] = sum(
value["score"] for value in GENERIC_SCORES.values()
)
return GENERIC_SCORES
SCORES = generate_task_scores_dict()
GENERIC_SCORES = generate_common_scores()
@cache.memoize(expire=60 * 60 * 24 * 3) # expires after 3 days
def _basic_check(hub_id):
data = ModelMetadata.from_hub(hub_id)
score = 0
if data is None:
return None
to_fix = {}
if task := data.pipeline_tag:
task_scores = SCORES[task]
data_dict = asdict(data)
for k, v in task_scores.items():
if k.startswith("_"):
continue
if data_dict[k] is None:
to_fix[k] = task_scores[k]["missing_recommendation"].replace(
"HUB_ID", hub_id
)
if data_dict[k] is not None:
score += v["score"]
max_score = task_scores["_max_score"]
score = score / max_score
(
f"Your model's metadata score is {round(score*100)}% based on suggested"
f" metadata for {task}. \n"
)
if to_fix:
recommendations = (
"Here are some suggestions to improve your model's metadata for"
f" {task}: \n"
)
for v in to_fix.values():
recommendations += f"\n- {v}"
data_dict["recommendations"] = recommendations
data_dict["score"] = score * 100
else:
data_dict = asdict(data)
for k, v in GENERIC_SCORES.items():
if k.startswith("_"):
continue
if data_dict[k] is None:
to_fix[k] = GENERIC_SCORES[k]["missing_recommendation"].replace(
"HUB_ID", hub_id
)
if data_dict[k] is not None:
score += v["score"]
score = score / GENERIC_SCORES["_max_score"]
data_dict["score"] = max(
0, (score / 2) * 100
) # TODO currently setting a manual penalty for not having a task
return orjson.dumps(data_dict)
def basic_check(hub_id):
return _basic_check(hub_id)
def create_query_url(query, skip=0):
return f"https://huggingface.co/api/search/full-text?q={query}&limit=100&skip={skip}&type=model"
@cache.memoize(expire=60 * 60 * 24 * 3) # expires after 3 days
def get_results(query) -> Dict[Any, Any]:
url = create_query_url(query)
r = httpx.get(url)
return r.json()
# result = {
# "repoId": "621ffdc036468d709f175eb5",
# "repoOwnerId": "60d099234330bad169e611f0",
# "isPrivate": False,
# "type": "model",
# "likes": 0,
# "isReadmeFile": True,
# "readmeStartLine": 8,
# "updatedAt": 1687806057107,
# "repoName": "hate_speech_en",
# "repoOwner": "IMSyPP",
# "tags": "pytorch, bert, text-classification, en, transformers, license:mit, has_space",
# "name": "IMSyPP/hate_speech_en",
# "fileName": "README.md",
# "formatted": {
# "repoName": [{"text": "hate_speech_en", "type": "text"}],
# "repoOwner": [{"text": "IMSyPP", "type": "text"}],
# "fileContent": [
# {"text": "\n# ", "type": "text"},
# {"text": "Hate", "type": "highlight"},
# {"text": " ", "type": "text"},
# {"text": "Speech", "type": "highlight"},
# {
# "text": " Classifier for Social Media Content in English Language\n\nA monolingual model for ",
# "type": "text",
# },
# {"text": "hate", "type": "highlight"},
# {"text": " ", "type": "text"},
# {"text": "speech", "type": "highlight"},
# {
# "text": " classification of social media content in English language. The model was trained on 103190 YouTube comments and tested on an independent test set of 20554 YouTube comments. It is based on English BERT base pre-trained language model.\n\n## Tokenizer\n\nDuring training the text was preprocessed using the original English BERT base tokenizer. We suggest the same tokenizer is used for inference.\n\n## Model output\n\nThe model classifies each input into one of four distinct classes:\n* 0 - acceptable\n* 1 - inappropriate\n* 2 - offensive\n* 3 - violent",
# "type": "text",
# },
# ],
# "tags": [
# {
# "text": "pytorch, bert, text-classification, en, transformers, license:mit, has_space",
# "type": "text",
# }
# ],
# "name": [{"text": "IMSyPP/hate_speech_en", "type": "text"}],
# "fileName": [{"text": "README.md", "type": "text"}],
# },
# "authorData": {
# "avatarUrl": "https://aeiljuispo.cloudimg.io/v7/https://s3.amazonaws.com/moonup/production/uploads/1624284535629-60d08803565dd1d0867f7a37.png?w=200&h=200&f=face",
# "fullname": "IMSyPP EU REC AG project 875263 - Innovative Monitoring Systems and Prevention Policies of Online Hate Speech",
# "name": "IMSyPP",
# "type": "org",
# "isHf": False,
# },
# }
@backoff.on_exception(
backoff.expo,
Exception,
max_time=2,
raise_on_giveup=False,
)
def parse_single_result(result):
name, filename = result["name"], result["fileName"]
search_result_file_url = hf_hub_url(name, filename)
repo_hub_url = f"https://huggingface.co/{name}"
score = _basic_check(name)
if score is None:
return None
score = orjson.loads(score)
return {
"name": name,
"search_result_file_url": search_result_file_url,
"repo_hub_url": repo_hub_url,
"metadata_score": score["score"],
"model_card_length": score["model_card_length"],
"is_licensed": bool(score["license"]),
# "metadata_report": score
}
def filter_search_results(
results: List[Dict[Any, Any]], min_score=None, min_model_card_length=None
): # TODO make code more intuitive
results = thread_map(parse_single_result, results)
for i, parsed_result in tqdm(enumerate(results)):
# parsed_result = parse_single_result(result)
if parsed_result is None:
continue
if (
min_score is None
and min_model_card_length is not None
and parsed_result["model_card_length"] > min_model_card_length
or min_score is None
and min_model_card_length is None
):
yield parsed_result
elif min_score is not None:
if parsed_result["metadata_score"] <= min_score:
continue
if (
min_model_card_length is not None
and parsed_result["model_card_length"] > min_model_card_length
or min_model_card_length is None
):
parsed_result["original_position"] = i
yield parsed_result
def sort_search_results(filtered_search_results):
return sorted(
list(filtered_search_results),
key=lambda x: (x["metadata_score"], x["original_position"]),
reverse=True,
)
def find_context(text, query, window_size):
# Split the text into words
words = text.split()
# Find the index of the query token
try:
index = words.index(query)
# Get the start and end indices of the context window
start = max(0, index - window_size)
end = min(len(words), index + window_size + 1)
return " ".join(words[start:end])
except ValueError:
return " ".join(words[:window_size])
# single_result[
# "text"
# ] = "lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua."
# results = [single_result] * 3
def create_markdown(results):
rows = []
for result in results:
row = f"""# [{result['name']}]({result['repo_hub_url']})
| Metadata Quality Score | Model card length | Licensed |
|------------------------|-------------------|----------|
| {result['metadata_score']:.0f}% | {result['model_card_length']} | {"&#9989;" if result['is_licensed'] else "&#10060;"} |
\n
*{result['text']}*
<hr>
\n"""
rows.append(row)
return "\n".join(rows)
def get_result_card_snippet(result):
try:
result_text = httpx.get(result["search_result_file_url"]).text
result["text"] = find_context(result_text, query, 100)
except httpx.ConnectError:
result["text"] = "Could not load model card"
return result
def _search_hub(
query: str,
min_score: Optional[int] = None,
min_model_card_length: Optional[int] = None,
):
results = get_results(query)
print(f"Found {len(results['hits'])} results")
results = results["hits"]
number_original_results = len(results)
filtered_results = filter_search_results(
results, min_score=min_score, min_model_card_length=min_model_card_length
)
filtered_results = sort_search_results(filtered_results)
# final_results = []
# for result in filtered_results:
# result_text = httpx.get(result["search_result_file_url"]).text
# result["text"] = find_context(result_text, query, 100)
# final_results.append(result)
final_results = thread_map(get_result_card_snippet, filtered_results)
percent_of_original = round(
len(final_results) / number_original_results * 100, ndigits=0
)
filtered_vs_og = f"""
| Number of original results | Number of results after filtering | Percentage of results after filtering |
| -------------------------- | --------------------------------- | -------------------------------------------- |
| {number_original_results} | {len(final_results)} | {percent_of_original}% |
"""
print(final_results)
return filtered_vs_og, create_markdown(final_results)
def search_hub(query: str, min_score=None, min_model_card_length=None):
return _search_hub(query, min_score, min_model_card_length)
with gr.Blocks() as demo:
gr.Markdown("# &#129303; Hub model search with metadata quality filters")
with gr.Row():
with gr.Column():
query = gr.Textbox("x-ray", label="Search query")
with gr.Column():
button = gr.Button("Search")
with gr.Row():
# gr.Checkbox(False, label="Must have licence?")
mim_model_card_length = gr.Number(
None, label="Minimum model card length"
)
min_metadata_score = gr.Slider(0, label="Minimum metadata score")
filter_results = gr.Markdown("Filter results vs original search")
results_markdown = gr.Markdown("Search results")
button.click(
search_hub,
[query, min_metadata_score, mim_model_card_length],
[filter_results, results_markdown],
)
demo.queue(concurrency_count=32)
demo.launch()
# with gr.Blocks() as demo:
# gr.Markdown(
# """
# # Model Metadata Checker
# This app will check your model's metadata for a few common issues."""
# )
# with gr.Row():
# text = gr.Text(label="Model ID")
# button = gr.Button(label="Check", type="submit")
# with gr.Row():
# gr.Markdown("Results")
# markdown = gr.JSON()
# button.click(_basic_check, text, markdown)
# demo.queue(concurrency_count=32)
# demo.launch()
# gr.Interface(fn=basic_check, inputs="text", outputs="markdown").launch(debug=True)