Spaces:
Runtime error
title: Whisper Live Kit
emoji: ๐ณ
colorFrom: purple
colorTo: gray
sdk: docker
app_port: 7860
WhisperLiveKit
Real-time, Fully Local Speech-to-Text with Speaker Diarization
WhisperLiveKit brings real-time speech transcription directly to your browser, with a ready-to-use backend+server and a simple frontend. โจ
Built on SimulStreaming (SOTA 2025) and WhisperStreaming (SOTA 2023) for transcription, plus Streaming Sortformer (SOTA 2025) and Diart (SOTA 2021) for diarization.
Key Features
- Real-time Transcription - Locally (or on-prem) convert speech to text instantly as you speak
- Speaker Diarization - Identify different speakers in real-time. (โ ๏ธ backend Streaming Sortformer in developement)
- Multi-User Support - Handle multiple users simultaneously with a single backend/server
- Automatic Silence Chunking โ Automatically chunks when no audio is detected to limit buffer size
- Confidence Validation โ Immediately validate high-confidence tokens for faster inference (WhisperStreaming only)
- Buffering Preview โ Displays unvalidated transcription segments (not compatible with SimulStreaming yet)
- Punctuation-Based Speaker Splitting [BETA] - Align speaker changes with natural sentence boundaries for more readable transcripts
- SimulStreaming Backend - Dual-licensed - Ultra-low latency transcription using SOTA AlignAtt policy.
Architecture
Quick Start
# Install the package
pip install whisperlivekit
# Start the transcription server
whisperlivekit-server --model tiny.en
# Open your browser at http://localhost:8000 to see the interface.
# Use -ssl-certfile public.crt --ssl-keyfile private.key parameters to use SSL
That's it! Start speaking and watch your words appear on screen.
Installation
#Install from PyPI (Recommended)
pip install whisperlivekit
#Install from Source
git clone https://github.com/QuentinFuxa/WhisperLiveKit
cd WhisperLiveKit
pip install -e .
FFmpeg Dependency
# Ubuntu/Debian
sudo apt install ffmpeg
# macOS
brew install ffmpeg
# Windows
# Download from https://ffmpeg.org/download.html and add to PATH
Optional Dependencies
# Voice Activity Controller (prevents hallucinations)
pip install torch
# Sentence-based buffer trimming
pip install mosestokenizer wtpsplit
pip install tokenize_uk # If you work with Ukrainian text
# Speaker diarization
pip install diart
# Alternative Whisper backends (default is faster-whisper)
pip install whisperlivekit[whisper] # Original Whisper
pip install whisperlivekit[whisper-timestamped] # Improved timestamps
pip install whisperlivekit[mlx-whisper] # Apple Silicon optimization
pip install whisperlivekit[openai] # OpenAI API
pip install whisperlivekit[simulstreaming]
๐น Pyannote Models Setup
For diarization, you need access to pyannote.audio models:
- Accept user conditions for the
pyannote/segmentationmodel - Accept user conditions for the
pyannote/segmentation-3.0model - Accept user conditions for the
pyannote/embeddingmodel - Login with HuggingFace:
pip install huggingface_hub
huggingface-cli login
๐ป Usage Examples
Command-line Interface
Start the transcription server with various options:
# Basic server with English model
whisperlivekit-server --model tiny.en
# Advanced configuration with diarization
whisperlivekit-server --host 0.0.0.0 --port 8000 --model medium --diarization --language auto
# SimulStreaming backend for ultra-low latency
whisperlivekit-server --backend simulstreaming --model large-v3 --frame-threshold 20
Python API Integration (Backend)
Check basic_server.py for a complete example.
from whisperlivekit import TranscriptionEngine, AudioProcessor, parse_args
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from fastapi.responses import HTMLResponse
from contextlib import asynccontextmanager
import asyncio
transcription_engine = None
@asynccontextmanager
async def lifespan(app: FastAPI):
global transcription_engine
transcription_engine = TranscriptionEngine(model="medium", diarization=True, lan="en")
# You can also load from command-line arguments using parse_args()
# args = parse_args()
# transcription_engine = TranscriptionEngine(**vars(args))
yield
app = FastAPI(lifespan=lifespan)
# Process WebSocket connections
async def handle_websocket_results(websocket: WebSocket, results_generator):
async for response in results_generator:
await websocket.send_json(response)
await websocket.send_json({"type": "ready_to_stop"})
@app.websocket("/asr")
async def websocket_endpoint(websocket: WebSocket):
global transcription_engine
# Create a new AudioProcessor for each connection, passing the shared engine
audio_processor = AudioProcessor(transcription_engine=transcription_engine)
results_generator = await audio_processor.create_tasks()
results_task = asyncio.create_task(handle_websocket_results(websocket, results_generator))
await websocket.accept()
while True:
message = await websocket.receive_bytes()
await audio_processor.process_audio(message)
Frontend Implementation
The package includes a simple HTML/JavaScript implementation that you can adapt for your project. You can find it here, or load its content using get_web_interface_html() :
from whisperlivekit import get_web_interface_html
html_content = get_web_interface_html()
โ๏ธ Configuration Reference
WhisperLiveKit offers extensive configuration options:
| Parameter | Description | Default |
|---|---|---|
--host |
Server host address | localhost |
--port |
Server port | 8000 |
--model |
Whisper model size. Caution : '.en' models do not work with Simulstreaming | tiny |
--language |
Source language code or auto |
en |
--task |
transcribe or translate |
transcribe |
--backend |
Processing backend | faster-whisper |
--diarization |
Enable speaker identification | False |
--punctuation-split |
Use punctuation to improve speaker boundaries | True |
--confidence-validation |
Use confidence scores for faster validation | False |
--min-chunk-size |
Minimum audio chunk size (seconds) | 1.0 |
--vac |
Use Voice Activity Controller | False |
--no-vad |
Disable Voice Activity Detection | False |
--buffer_trimming |
Buffer trimming strategy (sentence or segment) |
segment |
--warmup-file |
Audio file path for model warmup | jfk.wav |
--ssl-certfile |
Path to the SSL certificate file (for HTTPS support) | None |
--ssl-keyfile |
Path to the SSL private key file (for HTTPS support) | None |
--segmentation-model |
Hugging Face model ID for pyannote.audio segmentation model. Available models | pyannote/segmentation-3.0 |
--embedding-model |
Hugging Face model ID for pyannote.audio embedding model. Available models | speechbrain/spkrec-ecapa-voxceleb |
SimulStreaming-specific Options:
| Parameter | Description | Default |
|---|---|---|
--frame-threshold |
AlignAtt frame threshold (lower = faster, higher = more accurate) | 25 |
--beams |
Number of beams for beam search (1 = greedy decoding) | 1 |
--decoder |
Force decoder type (beam or greedy) |
auto |
--audio-max-len |
Maximum audio buffer length (seconds) | 30.0 |
--audio-min-len |
Minimum audio length to process (seconds) | 0.0 |
--cif-ckpt-path |
Path to CIF model for word boundary detection | None |
--never-fire |
Never truncate incomplete words | False |
--init-prompt |
Initial prompt for the model | None |
--static-init-prompt |
Static prompt that doesn't scroll | None |
--max-context-tokens |
Maximum context tokens | None |
--model-path |
Direct path to .pt model file. Download it if not found | ./base.pt |
๐ง How It Works
- Audio Capture: Browser's MediaRecorder API captures audio in webm/opus format
- Streaming: Audio chunks are sent to the server via WebSocket
- Processing: Server decodes audio with FFmpeg and streams into the model for transcription
- Real-time Output: Partial transcriptions appear immediately in light gray (the 'aperรงu') and finalized text appears in normal color
๐ Deployment Guide
To deploy WhisperLiveKit in production:
Server Setup (Backend):
# Install production ASGI server pip install uvicorn gunicorn # Launch with multiple workers gunicorn -k uvicorn.workers.UvicornWorker -w 4 your_app:appFrontend Integration:
- Host your customized version of the example HTML/JS in your web application
- Ensure WebSocket connection points to your server's address
Nginx Configuration (recommended for production):
server { listen 80; server_name your-domain.com; location / { proxy_pass http://localhost:8000; proxy_set_header Upgrade $http_upgrade; proxy_set_header Connection "upgrade"; proxy_set_header Host $host; }}HTTPS Support: For secure deployments, use "wss://" instead of "ws://" in WebSocket URL
๐ Docker
A basic Dockerfile is provided which allows re-use of Python package installation options. โ ๏ธ For large models, ensure that your docker runtime has enough memory available. See below usage examples:
All defaults
Create a reusable image with only the basics and then run as a named container:
docker build -t whisperlivekit-defaults . docker create --gpus all --name whisperlivekit -p 8000:8000 whisperlivekit-defaults docker start -i whisperlivekitNote: If you're running on a system without NVIDIA GPU support (such as Mac with Apple Silicon or any system without CUDA capabilities), you need to remove the
--gpus allflag from thedocker createcommand. Without GPU acceleration, transcription will use CPU only, which may be significantly slower. Consider using small models for better performance on CPU-only systems.
Customization
Customize the container options:
docker build -t whisperlivekit-defaults . docker create --gpus all --name whisperlivekit-base -p 8000:8000 whisperlivekit-defaults --model base docker start -i whisperlivekit-base--build-argOptions:EXTRAS="whisper-timestamped"- Add extras to the image's installation (no spaces). Remember to set necessary container options!HF_PRECACHE_DIR="./.cache/"- Pre-load a model cache for faster first-time startHF_TKN_FILE="./token"- Add your Hugging Face Hub access token to download gated models
๐ฎ Use Cases
Capture discussions in real-time for meeting transcription, help hearing-impaired users follow conversations through accessibility tools, transcribe podcasts or videos automatically for content creation, transcribe support calls with speaker identification for customer service...
๐ Acknowledgments
We extend our gratitude to the original authors of: