stulcrad's picture
Update README.md
4eb152e verified
|
raw
history blame
3.19 kB
metadata
license: cc-by-nc-sa-4.0
base_model: ufal/robeczech-base
tags:
  - generated_from_trainer
datasets:
  - stulcrad/CNEC2_0_flat
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: CNEC_2_0_robeczech-base
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: cnec
          type: cnec
          config: default
          split: validation
          args: default
        metrics:
          - name: Precision
            type: precision
            value: 0.853103448275862
          - name: Recall
            type: recall
            value: 0.8848354792560801
          - name: F1
            type: f1
            value: 0.8686797752808989
          - name: Accuracy
            type: accuracy
            value: 0.954457738324971
language:
  - cs

CNEC_2_0_robeczech-base

This model is a fine-tuned version of ufal/robeczech-base on the cnec dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3306
  • Precision: 0.8531
  • Recall: 0.8848
  • F1: 0.8687
  • Accuracy: 0.9545

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.4499 2.22 2000 0.3871 0.7163 0.7099 0.7131 0.9222
0.2342 4.44 4000 0.2576 0.8149 0.8251 0.8200 0.9451
0.1449 6.67 6000 0.2407 0.8231 0.8523 0.8375 0.9492
0.1027 8.89 8000 0.2267 0.8362 0.8748 0.8551 0.9527
0.0751 11.11 10000 0.2429 0.8394 0.8712 0.8550 0.9522
0.0473 13.33 12000 0.2633 0.8439 0.8720 0.8577 0.9535
0.0369 15.56 14000 0.2821 0.8468 0.8755 0.8609 0.9541
0.0286 17.78 16000 0.2797 0.8534 0.8827 0.8678 0.9558
0.0234 20.0 18000 0.2860 0.8550 0.8834 0.8690 0.9558
0.0168 22.22 20000 0.3146 0.8471 0.8795 0.8630 0.9531
0.0142 24.44 22000 0.3165 0.8488 0.8816 0.8649 0.9530
0.011 26.67 24000 0.3291 0.8518 0.8816 0.8664 0.9537
0.0092 28.89 26000 0.3306 0.8531 0.8848 0.8687 0.9545

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0