VSFC TOPIC Classifier using PhoBERT
This model is fine-tuned from vinai/phobert-base
on the UIT-VSFC dataset for Vietnamese Students Feedback Corpus topic analysis.
๐ง Model Details
- Model type: Transformer (BERT-based)
- Base model:
vinai/phobert-base
- Fine-tuned task: Sentence-level topc classification
- Target labels: Lecturer, Training program, Facility, Others
- Tokenizer: SentencePiece BPE
๐ Training Data
- Dataset: UIT-VSFC
- Language: Vietnamese
- License: Academic use
- Studentsโ feedback is a vital resource for the interdisciplinary research involving the combining of two different research fields between sentiment analysis and education.
๐ How to Use
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("tmt3103/VSFC-topic-classify-phoBERT")
model = AutoModelForSequenceClassification.from_pretrained("tmt3103/VSFC-topic-classify-phoBERT")
inputs = tokenizer("Giแบฃng viรชn thรขn thiแปn dแป
thฦฐฦกng", return_tensors="pt")
outputs = model(**inputs)
predicted_class = outputs.logits.argmax(dim=-1).item()
- Downloads last month
- 9
Space using tmt3103/VSFC-topic-classify-phoBERT 1
Evaluation results
- accuracy on UIT-VSFCself-reported89.135
- f1 on UIT-VSFCself-reported89.044