VSFC TOPIC Classifier using PhoBERT

This model is fine-tuned from vinai/phobert-base on the UIT-VSFC dataset for Vietnamese Students Feedback Corpus topic analysis.

๐Ÿง  Model Details

  • Model type: Transformer (BERT-based)
  • Base model: vinai/phobert-base
  • Fine-tuned task: Sentence-level topc classification
  • Target labels: Lecturer, Training program, Facility, Others
  • Tokenizer: SentencePiece BPE

๐Ÿ“š Training Data

  • Dataset: UIT-VSFC
  • Language: Vietnamese
  • License: Academic use
  • Studentsโ€™ feedback is a vital resource for the interdisciplinary research involving the combining of two different research fields between sentiment analysis and education.

๐Ÿš€ How to Use

from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("tmt3103/VSFC-topic-classify-phoBERT")
model = AutoModelForSequenceClassification.from_pretrained("tmt3103/VSFC-topic-classify-phoBERT")

inputs = tokenizer("Giแบฃng viรชn thรขn thiแป‡n dแป… thฦฐฦกng", return_tensors="pt")
outputs = model(**inputs)
predicted_class = outputs.logits.argmax(dim=-1).item()
Downloads last month
9
Safetensors
Model size
135M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Space using tmt3103/VSFC-topic-classify-phoBERT 1

Evaluation results