metadata
license: apache-2.0
tags:
- text-classification
- topic-analysis
- vietnamese
- vsfc
- phobert
language:
- vi
datasets:
- uit-vsfc
model-index:
- name: VSFC Topic Classifier (PhoBERT)
results:
- task:
type: text-classification
name: Topic Classification
dataset:
name: UIT-VSFC
type: uit-vsfc
metrics:
- type: accuracy
value: 89.1346
- type: f1
value: 89.0436
VSFC TOPIC Classifier using PhoBERT
This model is fine-tuned from vinai/phobert-base
on the UIT-VSFC dataset for Vietnamese Students Feedback Corpus topic analysis.
🧠 Model Details
- Model type: Transformer (BERT-based)
- Base model:
vinai/phobert-base
- Fine-tuned task: Sentence-level topc classification
- Target labels: Lecturer, Training program, Facility, Others
- Tokenizer: SentencePiece BPE
📚 Training Data
- Dataset: UIT-VSFC
- Language: Vietnamese
- License: Academic use
- Students’ feedback is a vital resource for the interdisciplinary research involving the combining of two different research fields between sentiment analysis and education.
🚀 How to Use
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("tmt3103/VSFC-topic-classify-phoBERT")
model = AutoModelForSequenceClassification.from_pretrained("tmt3103/VSFC-topic-classify-phoBERT")
inputs = tokenizer("Giảng viên thân thiện dễ thương", return_tensors="pt")
outputs = model(**inputs)
predicted_class = outputs.logits.argmax(dim=-1).item()