File size: 25,841 Bytes
2126d80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
---

language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3012496
- loss:MultipleNegativesRankingLoss
base_model: nreimers/MiniLM-L6-H384-uncased
datasets:
- sentence-transformers/gooaq
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
co2_eq_emissions:
  emissions: 22.281960304608415
  energy_consumed: 0.05732401763975595
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.212
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: MPNet base trained on AllNLI triplets
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: gooaq dev
      type: gooaq-dev
    metrics:
    - type: cosine_accuracy@1
      value: 0.1588
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.2785
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.3457
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.4466
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.1588
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.09283333333333332
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.06914
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.04466
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.1588
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.2785
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.3457
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.4466
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.2881970902221442
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.23927892857142846
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.2521367709898081
      name: Cosine Map@100
---


# MPNet base trained on AllNLI triplets

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nreimers/MiniLM-L6-H384-uncased](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) on the [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nreimers/MiniLM-L6-H384-uncased](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) <!-- at revision 3276f0fac9d818781d7a1327b3ff818fc4e643c0 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```

SentenceTransformer(

  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 

  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

  (asym): Asym(

    (query-0): Dense({'in_features': 384, 'out_features': 384, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})

    (doc-0): Dense({'in_features': 384, 'out_features': 384, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})

  )

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SentenceTransformer



# Download from the 🤗 Hub

model = SentenceTransformer("tomaarsen/MiniLM-L6-H384-uncased-gooaq-asym")

# Run inference

sentences = [

    'The weather is lovely today.',

    "It's so sunny outside!",

    'He drove to the stadium.',

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# [3, 384]



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings, embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Dataset: `gooaq-dev`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.1588     |

| cosine_accuracy@3   | 0.2785     |
| cosine_accuracy@5   | 0.3457     |

| cosine_accuracy@10  | 0.4466     |
| cosine_precision@1  | 0.1588     |

| cosine_precision@3  | 0.0928     |
| cosine_precision@5  | 0.0691     |

| cosine_precision@10 | 0.0447     |
| cosine_recall@1     | 0.1588     |

| cosine_recall@3     | 0.2785     |
| cosine_recall@5     | 0.3457     |

| cosine_recall@10    | 0.4466     |
| **cosine_ndcg@10**  | **0.2882** |

| cosine_mrr@10       | 0.2393     |

| cosine_map@100      | 0.2521     |



<!--

## Bias, Risks and Limitations



*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*

-->



<!--

### Recommendations



*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*

-->



## Training Details



### Training Dataset



#### gooaq



* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)

* Size: 3,012,496 training samples

* Columns: <code>question</code> and <code>answer</code>

* Approximate statistics based on the first 1000 samples:

  |         | question           | answer             |

  |:--------|:-------------------|:-------------------|

  | type    | dict               | dict               |

  | details | <ul><li></li></ul> | <ul><li></li></ul> |

* Samples:

  | question                                                                                        | answer                                                                                                                                                                                                                                                                                                                           |

  |:------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

  | <code>{'query': 'what is the difference between broilers and layers?'}</code>                   | <code>{'doc': 'An egg laying poultry is called egger or layer whereas broilers are reared for obtaining meat. So a layer should be able to produce more number of large sized eggs, without growing too much. On the other hand, a broiler should yield more meat and hence should be able to grow well.'}</code>                |

  | <code>{'query': 'what is the difference between chronological order and spatial order?'}</code> | <code>{'doc': 'As a writer, you should always remember that unlike chronological order and the other organizational methods for data, spatial order does not take into account the time. Spatial order is primarily focused on the location. All it does is take into account the location of objects and not the time.'}</code> |

  | <code>{'query': 'is kamagra same as viagra?'}</code>                                            | <code>{'doc': 'Kamagra is thought to contain the same active ingredient as Viagra, sildenafil citrate. In theory, it should work in much the same way as Viagra, taking about 45 minutes to take effect, and lasting for around 4-6 hours. However, this will vary from person to person.'}</code>                               |

* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:

  ```json

  {

      "scale": 20.0,

      "similarity_fct": "cos_sim"

  }

  ```



### Evaluation Dataset



#### gooaq



* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)

* Size: 3,012,496 evaluation samples

* Columns: <code>question</code> and <code>answer</code>

* Approximate statistics based on the first 1000 samples:

  |         | question           | answer             |

  |:--------|:-------------------|:-------------------|

  | type    | dict               | dict               |

  | details | <ul><li></li></ul> | <ul><li></li></ul> |

* Samples:

  | question                                                                                  | answer                                                                                                                                                                                                                                                                                                                                                |

  |:------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

  | <code>{'query': 'how do i program my directv remote with my tv?'}</code>                  | <code>{'doc': "['Press MENU on your remote.', 'Select Settings & Help > Settings > Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you wish to program. ... ', 'Follow the on-screen prompts to complete programming.']"}</code>                                                                                               |

  | <code>{'query': 'are rodrigues fruit bats nocturnal?'}</code>                             | <code>{'doc': 'Before its numbers were threatened by habitat destruction, storms, and hunting, some of those groups could number 500 or more members. Sunrise, sunset. Rodrigues fruit bats are most active at dawn, at dusk, and at night.'}</code>                                                                                                  |

  | <code>{'query': 'why does your heart rate increase during exercise bbc bitesize?'}</code> | <code>{'doc': 'During exercise there is an increase in physical activity and muscle cells respire more than they do when the body is at rest. The heart rate increases during exercise. The rate and depth of breathing increases - this makes sure that more oxygen is absorbed into the blood, and more carbon dioxide is removed from it.'}</code> |

* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:

  ```json

  {

      "scale": 20.0,

      "similarity_fct": "cos_sim"

  }

  ```



### Training Hyperparameters

#### Non-Default Hyperparameters



- `eval_strategy`: steps

- `per_device_train_batch_size`: 128

- `per_device_eval_batch_size`: 128

- `learning_rate`: 2e-05

- `num_train_epochs`: 1

- `warmup_ratio`: 0.1

- `seed`: 24

- `bf16`: True

- `batch_sampler`: no_duplicates



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False

- `eval_strategy`: steps

- `prediction_loss_only`: True

- `per_device_train_batch_size`: 128

- `per_device_eval_batch_size`: 128

- `per_gpu_train_batch_size`: None

- `per_gpu_eval_batch_size`: None

- `gradient_accumulation_steps`: 1

- `eval_accumulation_steps`: None

- `torch_empty_cache_steps`: None

- `learning_rate`: 2e-05

- `weight_decay`: 0.0

- `adam_beta1`: 0.9

- `adam_beta2`: 0.999

- `adam_epsilon`: 1e-08

- `max_grad_norm`: 1.0

- `num_train_epochs`: 1

- `max_steps`: -1

- `lr_scheduler_type`: linear

- `lr_scheduler_kwargs`: {}

- `warmup_ratio`: 0.1

- `warmup_steps`: 0

- `log_level`: passive

- `log_level_replica`: warning

- `log_on_each_node`: True

- `logging_nan_inf_filter`: True

- `save_safetensors`: True

- `save_on_each_node`: False

- `save_only_model`: False

- `restore_callback_states_from_checkpoint`: False

- `no_cuda`: False

- `use_cpu`: False

- `use_mps_device`: False

- `seed`: 24

- `data_seed`: None

- `jit_mode_eval`: False

- `use_ipex`: False

- `bf16`: True

- `fp16`: False

- `fp16_opt_level`: O1

- `half_precision_backend`: auto

- `bf16_full_eval`: False

- `fp16_full_eval`: False

- `tf32`: None

- `local_rank`: 0

- `ddp_backend`: None

- `tpu_num_cores`: None

- `tpu_metrics_debug`: False

- `debug`: []

- `dataloader_drop_last`: False

- `dataloader_num_workers`: 0

- `dataloader_prefetch_factor`: None

- `past_index`: -1

- `disable_tqdm`: False

- `remove_unused_columns`: True

- `label_names`: None

- `load_best_model_at_end`: False

- `ignore_data_skip`: False

- `fsdp`: []

- `fsdp_min_num_params`: 0

- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None

- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}

- `deepspeed`: None

- `label_smoothing_factor`: 0.0

- `optim`: adamw_torch

- `optim_args`: None

- `adafactor`: False

- `group_by_length`: False

- `length_column_name`: length

- `ddp_find_unused_parameters`: None

- `ddp_bucket_cap_mb`: None

- `ddp_broadcast_buffers`: False

- `dataloader_pin_memory`: True

- `dataloader_persistent_workers`: False

- `skip_memory_metrics`: True

- `use_legacy_prediction_loop`: False

- `push_to_hub`: False

- `resume_from_checkpoint`: None

- `hub_model_id`: None

- `hub_strategy`: every_save

- `hub_private_repo`: None

- `hub_always_push`: False

- `gradient_checkpointing`: False

- `gradient_checkpointing_kwargs`: None

- `include_inputs_for_metrics`: False

- `include_for_metrics`: []

- `eval_do_concat_batches`: True

- `fp16_backend`: auto

- `push_to_hub_model_id`: None

- `push_to_hub_organization`: None

- `mp_parameters`: 

- `auto_find_batch_size`: False

- `full_determinism`: False

- `torchdynamo`: None

- `ray_scope`: last

- `ddp_timeout`: 1800

- `torch_compile`: False

- `torch_compile_backend`: None

- `torch_compile_mode`: None

- `dispatch_batches`: None

- `split_batches`: None

- `include_tokens_per_second`: False

- `include_num_input_tokens_seen`: False

- `neftune_noise_alpha`: None

- `optim_target_modules`: None

- `batch_eval_metrics`: False

- `eval_on_start`: False

- `use_liger_kernel`: False

- `eval_use_gather_object`: False

- `average_tokens_across_devices`: False

- `prompts`: None

- `batch_sampler`: no_duplicates

- `multi_dataset_batch_sampler`: proportional



</details>



### Training Logs

| Epoch  | Step | Training Loss | Validation Loss | gooaq-dev_cosine_ndcg@10 |

|:------:|:----:|:-------------:|:---------------:|:------------------------:|

| -1     | -1   | -             | -               | 0.0000                   |

| 0.0003 | 1    | 4.9236        | -               | -                        |

| 0.0128 | 50   | 4.8759        | -               | -                        |

| 0.0256 | 100  | 4.7225        | -               | -                        |

| 0.0384 | 150  | 4.0357        | -               | -                        |

| 0.0512 | 200  | 3.0877        | -               | -                        |

| 0.0640 | 250  | 2.5094        | -               | -                        |

| 0.0768 | 300  | 2.0771        | -               | -                        |

| 0.0896 | 350  | 1.734         | -               | -                        |

| 0.1024 | 400  | 1.4959        | -               | -                        |

| 0.1152 | 450  | 1.308         | -               | -                        |

| 0.1280 | 500  | 1.1529        | 0.8984          | 0.0796                   |

| 0.1408 | 550  | 1.0101        | -               | -                        |

| 0.1536 | 600  | 0.9601        | -               | -                        |

| 0.1664 | 650  | 0.8845        | -               | -                        |

| 0.1792 | 700  | 0.8348        | -               | -                        |

| 0.1920 | 750  | 0.7838        | -               | -                        |

| 0.2048 | 800  | 0.7457        | -               | -                        |

| 0.2176 | 850  | 0.6879        | -               | -                        |

| 0.2304 | 900  | 0.6778        | -               | -                        |

| 0.2432 | 950  | 0.6783        | -               | -                        |

| 0.2560 | 1000 | 0.6351        | 0.4814          | 0.2080                   |

| 0.2687 | 1050 | 0.6221        | -               | -                        |

| 0.2815 | 1100 | 0.6015        | -               | -                        |

| 0.2943 | 1150 | 0.5738        | -               | -                        |

| 0.3071 | 1200 | 0.5745        | -               | -                        |

| 0.3199 | 1250 | 0.574         | -               | -                        |

| 0.3327 | 1300 | 0.5464        | -               | -                        |

| 0.3455 | 1350 | 0.5257        | -               | -                        |

| 0.3583 | 1400 | 0.5074        | -               | -                        |

| 0.3711 | 1450 | 0.4905        | -               | -                        |

| 0.3839 | 1500 | 0.4633        | 0.3643          | 0.2435                   |

| 0.3967 | 1550 | 0.4853        | -               | -                        |

| 0.4095 | 1600 | 0.4587        | -               | -                        |

| 0.4223 | 1650 | 0.4561        | -               | -                        |

| 0.4351 | 1700 | 0.4442        | -               | -                        |

| 0.4479 | 1750 | 0.4399        | -               | -                        |

| 0.4607 | 1800 | 0.4448        | -               | -                        |

| 0.4735 | 1850 | 0.4159        | -               | -                        |

| 0.4863 | 1900 | 0.424         | -               | -                        |

| 0.4991 | 1950 | 0.419         | -               | -                        |

| 0.5119 | 2000 | 0.4049        | 0.3047          | 0.2713                   |

| 0.5247 | 2050 | 0.3897        | -               | -                        |

| 0.5375 | 2100 | 0.3873        | -               | -                        |

| 0.5503 | 2150 | 0.3892        | -               | -                        |

| 0.5631 | 2200 | 0.3777        | -               | -                        |

| 0.5759 | 2250 | 0.382         | -               | -                        |

| 0.5887 | 2300 | 0.3703        | -               | -                        |

| 0.6015 | 2350 | 0.3703        | -               | -                        |

| 0.6143 | 2400 | 0.3809        | -               | -                        |

| 0.6271 | 2450 | 0.3576        | -               | -                        |

| 0.6399 | 2500 | 0.3486        | 0.2686          | 0.2837                   |

| 0.6527 | 2550 | 0.3395        | -               | -                        |

| 0.6655 | 2600 | 0.3687        | -               | -                        |

| 0.6783 | 2650 | 0.365         | -               | -                        |

| 0.6911 | 2700 | 0.3553        | -               | -                        |

| 0.7039 | 2750 | 0.3446        | -               | -                        |

| 0.7167 | 2800 | 0.3396        | -               | -                        |

| 0.7295 | 2850 | 0.3505        | -               | -                        |

| 0.7423 | 2900 | 0.359         | -               | -                        |

| 0.7551 | 2950 | 0.3239        | -               | -                        |

| 0.7679 | 3000 | 0.3408        | 0.2474          | 0.2440                   |

| 0.7807 | 3050 | 0.3217        | -               | -                        |

| 0.7934 | 3100 | 0.3367        | -               | -                        |

| 0.8062 | 3150 | 0.3479        | -               | -                        |

| 0.8190 | 3200 | 0.3278        | -               | -                        |

| 0.8318 | 3250 | 0.3203        | -               | -                        |

| 0.8446 | 3300 | 0.2966        | -               | -                        |

| 0.8574 | 3350 | 0.3298        | -               | -                        |

| 0.8702 | 3400 | 0.3291        | -               | -                        |

| 0.8830 | 3450 | 0.3199        | -               | -                        |

| 0.8958 | 3500 | 0.3302        | 0.2363          | 0.2783                   |

| 0.9086 | 3550 | 0.3124        | -               | -                        |

| 0.9214 | 3600 | 0.3136        | -               | -                        |

| 0.9342 | 3650 | 0.3327        | -               | -                        |

| 0.9470 | 3700 | 0.3214        | -               | -                        |

| 0.9598 | 3750 | 0.3214        | -               | -                        |

| 0.9726 | 3800 | 0.3123        | -               | -                        |

| 0.9854 | 3850 | 0.3185        | -               | -                        |

| 0.9982 | 3900 | 0.2999        | -               | -                        |

| -1     | -1   | -             | -               | 0.2882                   |





### Environmental Impact

Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).

- **Energy Consumed**: 0.057 kWh

- **Carbon Emitted**: 0.022 kg of CO2

- **Hours Used**: 0.212 hours



### Training Hardware

- **On Cloud**: No

- **GPU Model**: 1 x NVIDIA GeForce RTX 3090

- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K

- **RAM Size**: 31.78 GB



### Framework Versions

- Python: 3.11.6

- Sentence Transformers: 3.5.0.dev0

- Transformers: 4.49.0.dev0

- PyTorch: 2.5.0+cu121

- Accelerate: 1.3.0

- Datasets: 2.20.0

- Tokenizers: 0.21.0



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



#### MultipleNegativesRankingLoss

```bibtex

@misc{henderson2017efficient,

    title={Efficient Natural Language Response Suggestion for Smart Reply},

    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},

    year={2017},

    eprint={1705.00652},

    archivePrefix={arXiv},

    primaryClass={cs.CL}

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->