|
---
|
|
tags:
|
|
- sentence-transformers
|
|
- sentence-similarity
|
|
- feature-extraction
|
|
- generated_from_trainer
|
|
- dataset_size:1000000
|
|
- loss:DenoisingAutoEncoderLoss
|
|
base_model: google-bert/bert-base-uncased
|
|
widget:
|
|
- source_sentence: He wound up homeless in the Mission District, playing for change
|
|
in the streets.
|
|
sentences:
|
|
- He wound up homeless, playing in streets
|
|
- It line-up of professional footballers,, firefighters and survivors.
|
|
- A (Dakota) belonging to the Dutch Air crash-landed near Beswick (Beswick Creek
|
|
now Barunga?
|
|
- source_sentence: The division remained near Arkhangelsk until the beginning of August,
|
|
when it was shipped across the White Sea to Murmansk.
|
|
sentences:
|
|
- The division remained near Arkhangelsk until the beginning of August, when it
|
|
was shipped across White Sea to Murmansk.
|
|
- The building is and.
|
|
- Maxim Triesman born October) is politician banker trade union leader.
|
|
- source_sentence: '"Leper," the last song on the album, was left as an instrumental
|
|
as Jourgensen had left the studio earlier than scheduled and did not care to write
|
|
any lyrics.'
|
|
sentences:
|
|
- There produced the viral host cells processes, more suitable environment for viral
|
|
replication transcription.
|
|
- As a the to
|
|
- Leper, the song on the album was left as an as Jourgensen had left the studio
|
|
scheduled and did care to any lyrics
|
|
- source_sentence: Prince and princess have given Gerda her their golden coach so
|
|
she can continue her search for Kay.
|
|
sentences:
|
|
- and princess given Gerda their golden coach so she can her search for Kay.
|
|
- handled the cinematography
|
|
- University Hoekstra was Professor of and Department of Multidisciplinary Water.
|
|
- source_sentence: While the early models stayed close to their original form, eight
|
|
subsequent generations varied substantially in size and styling.
|
|
sentences:
|
|
- While the stayed close their, eight generations varied substantially in size and
|
|
- Their influence, his's own tradition, his special organization all combined to
|
|
divert the young into a political career
|
|
- “ U ” cross of the river are a recent
|
|
datasets:
|
|
- princeton-nlp/datasets-for-simcse
|
|
pipeline_tag: sentence-similarity
|
|
library_name: sentence-transformers
|
|
metrics:
|
|
- pearson_cosine
|
|
- spearman_cosine
|
|
co2_eq_emissions:
|
|
emissions: 556.5173349579181
|
|
energy_consumed: 1.4317326253991955
|
|
source: codecarbon
|
|
training_type: fine-tuning
|
|
on_cloud: false
|
|
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
|
|
ram_total_size: 31.777088165283203
|
|
hours_used: 4.403
|
|
hardware_used: 1 x NVIDIA GeForce RTX 3090
|
|
model-index:
|
|
- name: SentenceTransformer based on google-bert/bert-base-uncased
|
|
results:
|
|
- task:
|
|
type: semantic-similarity
|
|
name: Semantic Similarity
|
|
dataset:
|
|
name: sts dev
|
|
type: sts-dev
|
|
metrics:
|
|
- type: pearson_cosine
|
|
value: 0.6732163313155011
|
|
name: Pearson Cosine
|
|
- type: spearman_cosine
|
|
value: 0.6765812652563955
|
|
name: Spearman Cosine
|
|
- task:
|
|
type: semantic-similarity
|
|
name: Semantic Similarity
|
|
dataset:
|
|
name: sts test
|
|
type: sts-test
|
|
metrics:
|
|
- type: pearson_cosine
|
|
value: 0.6424591318281525
|
|
name: Pearson Cosine
|
|
- type: spearman_cosine
|
|
value: 0.6322331484751982
|
|
name: Spearman Cosine
|
|
---
|
|
|
|
# SentenceTransformer based on google-bert/bert-base-uncased
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the [datasets-for-simcse](https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
|
|
|
## Model Details
|
|
|
|
### Model Description
|
|
- **Model Type:** Sentence Transformer
|
|
- **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) <!-- at revision 86b5e0934494bd15c9632b12f734a8a67f723594 -->
|
|
- **Maximum Sequence Length:** 75 tokens
|
|
- **Output Dimensionality:** 768 dimensions
|
|
- **Similarity Function:** Cosine Similarity
|
|
- **Training Dataset:**
|
|
- [datasets-for-simcse](https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse)
|
|
<!-- - **Language:** Unknown -->
|
|
<!-- - **License:** Unknown -->
|
|
|
|
### Model Sources
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
|
|
|
### Full Model Architecture
|
|
|
|
```
|
|
SentenceTransformer(
|
|
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel
|
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
|
)
|
|
```
|
|
|
|
## Usage
|
|
|
|
### Direct Usage (Sentence Transformers)
|
|
|
|
First install the Sentence Transformers library:
|
|
|
|
```bash
|
|
pip install -U sentence-transformers
|
|
```
|
|
|
|
Then you can load this model and run inference.
|
|
```python
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
# Download from the 🤗 Hub
|
|
model = SentenceTransformer("tomaarsen/bert-base-uncased-stsb-tsdae")
|
|
# Run inference
|
|
sentences = [
|
|
'While the early models stayed close to their original form, eight subsequent generations varied substantially in size and styling.',
|
|
'While the stayed close their, eight generations varied substantially in size and',
|
|
'“ U ” cross of the river are a recent',
|
|
]
|
|
embeddings = model.encode(sentences)
|
|
print(embeddings.shape)
|
|
# [3, 768]
|
|
|
|
# Get the similarity scores for the embeddings
|
|
similarities = model.similarity(embeddings, embeddings)
|
|
print(similarities.shape)
|
|
# [3, 3]
|
|
```
|
|
|
|
<!--
|
|
### Direct Usage (Transformers)
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Downstream Usage (Sentence Transformers)
|
|
|
|
You can finetune this model on your own dataset.
|
|
|
|
<details><summary>Click to expand</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Out-of-Scope Use
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
|
-->
|
|
|
|
## Evaluation
|
|
|
|
### Metrics
|
|
|
|
#### Semantic Similarity
|
|
|
|
* Datasets: `sts-dev` and `sts-test`
|
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
|
|
|
| Metric | sts-dev | sts-test |
|
|
|:--------------------|:-----------|:-----------|
|
|
| pearson_cosine | 0.6732 | 0.6425 |
|
|
| **spearman_cosine** | **0.6766** | **0.6322** |
|
|
|
|
<!--
|
|
## Bias, Risks and Limitations
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
|
-->
|
|
|
|
<!--
|
|
### Recommendations
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
|
-->
|
|
|
|
## Training Details
|
|
|
|
### Training Dataset
|
|
|
|
#### datasets-for-simcse
|
|
|
|
* Dataset: [datasets-for-simcse](https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse) at [e145e8b](https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/tree/e145e8bb659b2aa2669f32ef79cb4cdef6c58fef)
|
|
* Size: 1,000,000 training samples
|
|
* Columns: <code>text</code> and <code>noisy</code>
|
|
* Approximate statistics based on the first 1000 samples:
|
|
| | text | noisy |
|
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
|
| type | string | string |
|
|
| details | <ul><li>min: 3 tokens</li><li>mean: 27.96 tokens</li><li>max: 75 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 17.68 tokens</li><li>max: 75 tokens</li></ul> |
|
|
* Samples:
|
|
| text | noisy |
|
|
|:---------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------|
|
|
| <code>White was born in Iver, England.</code> | <code>White was born in Iver,</code> |
|
|
| <code>The common mangrove plants are "Rhizophora mucronata", "Sonneratia caseolaris", "Avicennia" spp., and "Aegiceras corniculatum".</code> | <code>plants are Rhizophora mucronata" "Sonneratia, spp.,".</code> |
|
|
| <code>H3K9ac and H3K14ac have been shown to be part of the active promoter state.</code> | <code>H3K9ac been part of active promoter state.</code> |
|
|
* Loss: [<code>DenoisingAutoEncoderLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#denoisingautoencoderloss)
|
|
|
|
### Evaluation Dataset
|
|
|
|
#### datasets-for-simcse
|
|
|
|
* Dataset: [datasets-for-simcse](https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse) at [e145e8b](https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/tree/e145e8bb659b2aa2669f32ef79cb4cdef6c58fef)
|
|
* Size: 1,000,000 evaluation samples
|
|
* Columns: <code>text</code> and <code>noisy</code>
|
|
* Approximate statistics based on the first 1000 samples:
|
|
| | text | noisy |
|
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
|
| type | string | string |
|
|
| details | <ul><li>min: 3 tokens</li><li>mean: 28.12 tokens</li><li>max: 75 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 17.79 tokens</li><li>max: 66 tokens</li></ul> |
|
|
* Samples:
|
|
| text | noisy |
|
|
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
|
| <code>Philippe Hervé (born 16 April 1959) is a French water polo player.</code> | <code>Philippe Hervé born April 1959 is French</code> |
|
|
| <code>lies at the very edge of Scottish offshore waters, close to the maritime boundary with Norway.</code> | <code>the edge Scottish offshore waters close to maritime boundary with Norway</code> |
|
|
| <code>The place is an exceptional example of the forced migration of convicts (Vinegar Hill rebels) and the development associated with punishment and reform, particularly convict labour and the associated coal mines.</code> | <code>The is an example of forced migration of convicts (Vinegar rebels and the development punishment and reform, particularly convict and the associated coal.</code> |
|
|
* Loss: [<code>DenoisingAutoEncoderLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#denoisingautoencoderloss)
|
|
|
|
### Training Hyperparameters
|
|
#### Non-Default Hyperparameters
|
|
|
|
- `eval_strategy`: steps
|
|
- `learning_rate`: 3e-05
|
|
- `num_train_epochs`: 1
|
|
- `warmup_ratio`: 0.1
|
|
- `fp16`: True
|
|
|
|
#### All Hyperparameters
|
|
<details><summary>Click to expand</summary>
|
|
|
|
- `overwrite_output_dir`: False
|
|
- `do_predict`: False
|
|
- `eval_strategy`: steps
|
|
- `prediction_loss_only`: True
|
|
- `per_device_train_batch_size`: 8
|
|
- `per_device_eval_batch_size`: 8
|
|
- `per_gpu_train_batch_size`: None
|
|
- `per_gpu_eval_batch_size`: None
|
|
- `gradient_accumulation_steps`: 1
|
|
- `eval_accumulation_steps`: None
|
|
- `torch_empty_cache_steps`: None
|
|
- `learning_rate`: 3e-05
|
|
- `weight_decay`: 0.0
|
|
- `adam_beta1`: 0.9
|
|
- `adam_beta2`: 0.999
|
|
- `adam_epsilon`: 1e-08
|
|
- `max_grad_norm`: 1.0
|
|
- `num_train_epochs`: 1
|
|
- `max_steps`: -1
|
|
- `lr_scheduler_type`: linear
|
|
- `lr_scheduler_kwargs`: {}
|
|
- `warmup_ratio`: 0.1
|
|
- `warmup_steps`: 0
|
|
- `log_level`: passive
|
|
- `log_level_replica`: warning
|
|
- `log_on_each_node`: True
|
|
- `logging_nan_inf_filter`: True
|
|
- `save_safetensors`: True
|
|
- `save_on_each_node`: False
|
|
- `save_only_model`: False
|
|
- `restore_callback_states_from_checkpoint`: False
|
|
- `no_cuda`: False
|
|
- `use_cpu`: False
|
|
- `use_mps_device`: False
|
|
- `seed`: 42
|
|
- `data_seed`: None
|
|
- `jit_mode_eval`: False
|
|
- `use_ipex`: False
|
|
- `bf16`: False
|
|
- `fp16`: True
|
|
- `fp16_opt_level`: O1
|
|
- `half_precision_backend`: auto
|
|
- `bf16_full_eval`: False
|
|
- `fp16_full_eval`: False
|
|
- `tf32`: None
|
|
- `local_rank`: 0
|
|
- `ddp_backend`: None
|
|
- `tpu_num_cores`: None
|
|
- `tpu_metrics_debug`: False
|
|
- `debug`: []
|
|
- `dataloader_drop_last`: False
|
|
- `dataloader_num_workers`: 0
|
|
- `dataloader_prefetch_factor`: None
|
|
- `past_index`: -1
|
|
- `disable_tqdm`: False
|
|
- `remove_unused_columns`: True
|
|
- `label_names`: None
|
|
- `load_best_model_at_end`: False
|
|
- `ignore_data_skip`: False
|
|
- `fsdp`: []
|
|
- `fsdp_min_num_params`: 0
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
|
- `deepspeed`: None
|
|
- `label_smoothing_factor`: 0.0
|
|
- `optim`: adamw_torch
|
|
- `optim_args`: None
|
|
- `adafactor`: False
|
|
- `group_by_length`: False
|
|
- `length_column_name`: length
|
|
- `ddp_find_unused_parameters`: None
|
|
- `ddp_bucket_cap_mb`: None
|
|
- `ddp_broadcast_buffers`: False
|
|
- `dataloader_pin_memory`: True
|
|
- `dataloader_persistent_workers`: False
|
|
- `skip_memory_metrics`: True
|
|
- `use_legacy_prediction_loop`: False
|
|
- `push_to_hub`: False
|
|
- `resume_from_checkpoint`: None
|
|
- `hub_model_id`: None
|
|
- `hub_strategy`: every_save
|
|
- `hub_private_repo`: None
|
|
- `hub_always_push`: False
|
|
- `gradient_checkpointing`: False
|
|
- `gradient_checkpointing_kwargs`: None
|
|
- `include_inputs_for_metrics`: False
|
|
- `include_for_metrics`: []
|
|
- `eval_do_concat_batches`: True
|
|
- `fp16_backend`: auto
|
|
- `push_to_hub_model_id`: None
|
|
- `push_to_hub_organization`: None
|
|
- `mp_parameters`:
|
|
- `auto_find_batch_size`: False
|
|
- `full_determinism`: False
|
|
- `torchdynamo`: None
|
|
- `ray_scope`: last
|
|
- `ddp_timeout`: 1800
|
|
- `torch_compile`: False
|
|
- `torch_compile_backend`: None
|
|
- `torch_compile_mode`: None
|
|
- `dispatch_batches`: None
|
|
- `split_batches`: None
|
|
- `include_tokens_per_second`: False
|
|
- `include_num_input_tokens_seen`: False
|
|
- `neftune_noise_alpha`: None
|
|
- `optim_target_modules`: None
|
|
- `batch_eval_metrics`: False
|
|
- `eval_on_start`: False
|
|
- `use_liger_kernel`: False
|
|
- `eval_use_gather_object`: False
|
|
- `average_tokens_across_devices`: False
|
|
- `prompts`: None
|
|
- `batch_sampler`: batch_sampler
|
|
- `multi_dataset_batch_sampler`: proportional
|
|
|
|
</details>
|
|
|
|
### Training Logs
|
|
<details><summary>Click to expand</summary>
|
|
|
|
| Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|
|
|:------:|:------:|:-------------:|:---------------:|:-----------------------:|:------------------------:|
|
|
| -1 | -1 | - | - | 0.3173 | - |
|
|
| 0.0081 | 1000 | 7.5472 | - | - | - |
|
|
| 0.0162 | 2000 | 6.0196 | - | - | - |
|
|
| 0.0242 | 3000 | 5.4872 | - | - | - |
|
|
| 0.0323 | 4000 | 5.1452 | - | - | - |
|
|
| 0.0404 | 5000 | 4.8099 | - | - | - |
|
|
| 0.0485 | 6000 | 4.5211 | - | - | - |
|
|
| 0.0566 | 7000 | 4.2967 | - | - | - |
|
|
| 0.0646 | 8000 | 4.1411 | - | - | - |
|
|
| 0.0727 | 9000 | 4.031 | - | - | - |
|
|
| 0.0808 | 10000 | 3.9636 | 3.8297 | 0.7237 | - |
|
|
| 0.0889 | 11000 | 3.9046 | - | - | - |
|
|
| 0.0970 | 12000 | 3.8138 | - | - | - |
|
|
| 0.1051 | 13000 | 3.7859 | - | - | - |
|
|
| 0.1131 | 14000 | 3.7237 | - | - | - |
|
|
| 0.1212 | 15000 | 3.6881 | - | - | - |
|
|
| 0.1293 | 16000 | 3.6133 | - | - | - |
|
|
| 0.1374 | 17000 | 3.5777 | - | - | - |
|
|
| 0.1455 | 18000 | 3.5285 | - | - | - |
|
|
| 0.1535 | 19000 | 3.4974 | - | - | - |
|
|
| 0.1616 | 20000 | 3.4421 | 3.3523 | 0.6978 | - |
|
|
| 0.1697 | 21000 | 3.416 | - | - | - |
|
|
| 0.1778 | 22000 | 3.4143 | - | - | - |
|
|
| 0.1859 | 23000 | 3.3661 | - | - | - |
|
|
| 0.1939 | 24000 | 3.3408 | - | - | - |
|
|
| 0.2020 | 25000 | 3.3079 | - | - | - |
|
|
| 0.2101 | 26000 | 3.2873 | - | - | - |
|
|
| 0.2182 | 27000 | 3.2639 | - | - | - |
|
|
| 0.2263 | 28000 | 3.2323 | - | - | - |
|
|
| 0.2343 | 29000 | 3.2416 | - | - | - |
|
|
| 0.2424 | 30000 | 3.2117 | 3.1015 | 0.6895 | - |
|
|
| 0.2505 | 31000 | 3.1868 | - | - | - |
|
|
| 0.2586 | 32000 | 3.1576 | - | - | - |
|
|
| 0.2667 | 33000 | 3.1619 | - | - | - |
|
|
| 0.2747 | 34000 | 3.1445 | - | - | - |
|
|
| 0.2828 | 35000 | 3.1387 | - | - | - |
|
|
| 0.2909 | 36000 | 3.1159 | - | - | - |
|
|
| 0.2990 | 37000 | 3.09 | - | - | - |
|
|
| 0.3071 | 38000 | 3.0771 | - | - | - |
|
|
| 0.3152 | 39000 | 3.065 | - | - | - |
|
|
| 0.3232 | 40000 | 3.0589 | 2.9535 | 0.6885 | - |
|
|
| 0.3313 | 41000 | 3.0539 | - | - | - |
|
|
| 0.3394 | 42000 | 3.0211 | - | - | - |
|
|
| 0.3475 | 43000 | 3.0158 | - | - | - |
|
|
| 0.3556 | 44000 | 3.0172 | - | - | - |
|
|
| 0.3636 | 45000 | 2.9912 | - | - | - |
|
|
| 0.3717 | 46000 | 2.9776 | - | - | - |
|
|
| 0.3798 | 47000 | 2.9539 | - | - | - |
|
|
| 0.3879 | 48000 | 2.9753 | - | - | - |
|
|
| 0.3960 | 49000 | 2.9467 | - | - | - |
|
|
| 0.4040 | 50000 | 2.9429 | 2.8288 | 0.6830 | - |
|
|
| 0.4121 | 51000 | 2.9243 | - | - | - |
|
|
| 0.4202 | 52000 | 2.9273 | - | - | - |
|
|
| 0.4283 | 53000 | 2.9118 | - | - | - |
|
|
| 0.4364 | 54000 | 2.9068 | - | - | - |
|
|
| 0.4444 | 55000 | 2.8961 | - | - | - |
|
|
| 0.4525 | 56000 | 2.8621 | - | - | - |
|
|
| 0.4606 | 57000 | 2.8825 | - | - | - |
|
|
| 0.4687 | 58000 | 2.8466 | - | - | - |
|
|
| 0.4768 | 59000 | 2.868 | - | - | - |
|
|
| 0.4848 | 60000 | 2.8372 | 2.7335 | 0.6871 | - |
|
|
| 0.4929 | 61000 | 2.8322 | - | - | - |
|
|
| 0.5010 | 62000 | 2.8239 | - | - | - |
|
|
| 0.5091 | 63000 | 2.8148 | - | - | - |
|
|
| 0.5172 | 64000 | 2.8137 | - | - | - |
|
|
| 0.5253 | 65000 | 2.8043 | - | - | - |
|
|
| 0.5333 | 66000 | 2.7973 | - | - | - |
|
|
| 0.5414 | 67000 | 2.7739 | - | - | - |
|
|
| 0.5495 | 68000 | 2.7694 | - | - | - |
|
|
| 0.5576 | 69000 | 2.755 | - | - | - |
|
|
| 0.5657 | 70000 | 2.7846 | 2.6422 | 0.6773 | - |
|
|
| 0.5737 | 71000 | 2.7246 | - | - | - |
|
|
| 0.5818 | 72000 | 2.7438 | - | - | - |
|
|
| 0.5899 | 73000 | 2.7314 | - | - | - |
|
|
| 0.5980 | 74000 | 2.7213 | - | - | - |
|
|
| 0.6061 | 75000 | 2.7402 | - | - | - |
|
|
| 0.6141 | 76000 | 2.6955 | - | - | - |
|
|
| 0.6222 | 77000 | 2.7131 | - | - | - |
|
|
| 0.6303 | 78000 | 2.6951 | - | - | - |
|
|
| 0.6384 | 79000 | 2.6812 | - | - | - |
|
|
| 0.6465 | 80000 | 2.6844 | 2.5743 | 0.6827 | - |
|
|
| 0.6545 | 81000 | 2.665 | - | - | - |
|
|
| 0.6626 | 82000 | 2.6528 | - | - | - |
|
|
| 0.6707 | 83000 | 2.6819 | - | - | - |
|
|
| 0.6788 | 84000 | 2.6529 | - | - | - |
|
|
| 0.6869 | 85000 | 2.6665 | - | - | - |
|
|
| 0.6949 | 86000 | 2.6554 | - | - | - |
|
|
| 0.7030 | 87000 | 2.6299 | - | - | - |
|
|
| 0.7111 | 88000 | 2.659 | - | - | - |
|
|
| 0.7192 | 89000 | 2.632 | - | - | - |
|
|
| 0.7273 | 90000 | 2.6209 | 2.5051 | 0.6782 | - |
|
|
| 0.7354 | 91000 | 2.6023 | - | - | - |
|
|
| 0.7434 | 92000 | 2.6226 | - | - | - |
|
|
| 0.7515 | 93000 | 2.6057 | - | - | - |
|
|
| 0.7596 | 94000 | 2.601 | - | - | - |
|
|
| 0.7677 | 95000 | 2.5888 | - | - | - |
|
|
| 0.7758 | 96000 | 2.5811 | - | - | - |
|
|
| 0.7838 | 97000 | 2.565 | - | - | - |
|
|
| 0.7919 | 98000 | 2.5727 | - | - | - |
|
|
| 0.8 | 99000 | 2.5863 | - | - | - |
|
|
| 0.8081 | 100000 | 2.5534 | 2.4526 | 0.6799 | - |
|
|
| 0.8162 | 101000 | 2.5423 | - | - | - |
|
|
| 0.8242 | 102000 | 2.5655 | - | - | - |
|
|
| 0.8323 | 103000 | 2.5394 | - | - | - |
|
|
| 0.8404 | 104000 | 2.5217 | - | - | - |
|
|
| 0.8485 | 105000 | 2.5534 | - | - | - |
|
|
| 0.8566 | 106000 | 2.5264 | - | - | - |
|
|
| 0.8646 | 107000 | 2.5481 | - | - | - |
|
|
| 0.8727 | 108000 | 2.5508 | - | - | - |
|
|
| 0.8808 | 109000 | 2.5302 | - | - | - |
|
|
| 0.8889 | 110000 | 2.5223 | 2.4048 | 0.6771 | - |
|
|
| 0.8970 | 111000 | 2.5274 | - | - | - |
|
|
| 0.9051 | 112000 | 2.515 | - | - | - |
|
|
| 0.9131 | 113000 | 2.5088 | - | - | - |
|
|
| 0.9212 | 114000 | 2.5035 | - | - | - |
|
|
| 0.9293 | 115000 | 2.495 | - | - | - |
|
|
| 0.9374 | 116000 | 2.5066 | - | - | - |
|
|
| 0.9455 | 117000 | 2.4858 | - | - | - |
|
|
| 0.9535 | 118000 | 2.4803 | - | - | - |
|
|
| 0.9616 | 119000 | 2.506 | - | - | - |
|
|
| 0.9697 | 120000 | 2.4906 | 2.3738 | 0.6766 | - |
|
|
| 0.9778 | 121000 | 2.5027 | - | - | - |
|
|
| 0.9859 | 122000 | 2.4858 | - | - | - |
|
|
| 0.9939 | 123000 | 2.4928 | - | - | - |
|
|
| -1 | -1 | - | - | - | 0.6322 |
|
|
|
|
</details>
|
|
|
|
### Environmental Impact
|
|
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
|
- **Energy Consumed**: 1.432 kWh
|
|
- **Carbon Emitted**: 0.557 kg of CO2
|
|
- **Hours Used**: 4.403 hours
|
|
|
|
### Training Hardware
|
|
- **On Cloud**: No
|
|
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
|
|
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
|
|
- **RAM Size**: 31.78 GB
|
|
|
|
### Framework Versions
|
|
- Python: 3.11.6
|
|
- Sentence Transformers: 3.4.0.dev0
|
|
- Transformers: 4.48.0.dev0
|
|
- PyTorch: 2.5.0+cu121
|
|
- Accelerate: 0.35.0.dev0
|
|
- Datasets: 2.20.0
|
|
- Tokenizers: 0.21.0
|
|
|
|
## Citation
|
|
|
|
### BibTeX
|
|
|
|
#### Sentence Transformers
|
|
```bibtex
|
|
@inproceedings{reimers-2019-sentence-bert,
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
author = "Reimers, Nils and Gurevych, Iryna",
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
month = "11",
|
|
year = "2019",
|
|
publisher = "Association for Computational Linguistics",
|
|
url = "https://arxiv.org/abs/1908.10084",
|
|
}
|
|
```
|
|
|
|
#### DenoisingAutoEncoderLoss
|
|
```bibtex
|
|
@inproceedings{wang-2021-TSDAE,
|
|
title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
|
|
author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",
|
|
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
|
|
month = nov,
|
|
year = "2021",
|
|
address = "Punta Cana, Dominican Republic",
|
|
publisher = "Association for Computational Linguistics",
|
|
pages = "671--688",
|
|
url = "https://arxiv.org/abs/2104.06979",
|
|
}
|
|
```
|
|
|
|
<!--
|
|
## Glossary
|
|
|
|
*Clearly define terms in order to be accessible across audiences.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Authors
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Contact
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
|
--> |