metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:160436
- loss:DenoisingAutoEncoderLoss
base_model: google-bert/bert-base-uncased
widget:
- source_sentence: >-
how do i make evolution check and notify new emails , without keeping main
ui open ?
sentences:
- ppas be removed?
- >-
how set serve as a samba primary controller pam modules to authenticate
against?
- how do make check and notify new emails keeping
- source_sentence: setting http proxy in awesome wm
sentences:
- on 10.04 on p series?
- setting http proxy awesome wm
- mean package is "set to installed?
- source_sentence: what is ubuntu advantage ?
sentences:
- is advantage?
- how turn calling on f1
- is utnubu?
- source_sentence: is there a way to check hardware integrity ?
sentences:
- is there a way to hardware integrity?
- to change key ctrl
- software is to tv card
- source_sentence: how to fix ssl error from python apps ( urllib ) when behind https proxy ?
sentences:
- windows started with archive
- upstart
- how to ssl from python () proxy
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- map
- mrr@10
- ndcg@10
co2_eq_emissions:
emissions: 74.02946721860093
energy_consumed: 0.19045301341027557
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.64
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on google-bert/bert-base-uncased
results:
- task:
type: reranking
name: Reranking
dataset:
name: AskUbuntu dev
type: AskUbuntu-dev
metrics:
- type: map
value: 0.5058158414596666
name: Map
- type: mrr@10
value: 0.6325571254142682
name: Mrr@10
- type: ndcg@10
value: 0.5529143206799554
name: Ndcg@10
- task:
type: reranking
name: Reranking
dataset:
name: AskUbuntu test
type: AskUbuntu-test
metrics:
- type: map
value: 0.5826205294809574
name: Map
- type: mrr@10
value: 0.7237319322514852
name: Mrr@10
- type: ndcg@10
value: 0.6303658219971641
name: Ndcg@10
SentenceTransformer based on google-bert/bert-base-uncased
This is a sentence-transformers model finetuned from google-bert/bert-base-uncased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google-bert/bert-base-uncased
- Maximum Sequence Length: 75 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/bert-base-uncased-tsdae-askubuntu")
# Run inference
sentences = [
'how to fix ssl error from python apps ( urllib ) when behind https proxy ?',
'how to ssl from python () proxy',
'upstart',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Reranking
- Datasets:
AskUbuntu-dev
andAskUbuntu-test
- Evaluated with
RerankingEvaluator
Metric | AskUbuntu-dev | AskUbuntu-test |
---|---|---|
map | 0.5058 | 0.5826 |
mrr@10 | 0.6326 | 0.7237 |
ndcg@10 | 0.5529 | 0.6304 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 160,436 training samples
- Columns:
text
andnoisy
- Approximate statistics based on the first 1000 samples:
text noisy type string string details - min: 5 tokens
- mean: 14.43 tokens
- max: 39 tokens
- min: 3 tokens
- mean: 9.47 tokens
- max: 24 tokens
- Samples:
text noisy how to get the `` your battery is broken '' message to go away ?
to get the is broken go away?
how can i set the software center to install software for non-root users ?
how can i the center install non-root users
what are some alternatives to upgrading without using the standard upgrade system ?
what are alternatives to using standard system?
- Loss:
DenoisingAutoEncoderLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepslearning_rate
: 3e-05num_train_epochs
: 1warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 3e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | AskUbuntu-dev_map | AskUbuntu-test_map |
---|---|---|---|---|
-1 | -1 | - | 0.4151 | - |
0.0499 | 1000 | 6.1757 | - | - |
0.0997 | 2000 | 4.0925 | - | - |
0.1496 | 3000 | 3.2921 | - | - |
0.1995 | 4000 | 2.9046 | - | - |
0.2493 | 5000 | 2.669 | 0.5158 | - |
0.2992 | 6000 | 2.5884 | - | - |
0.3490 | 7000 | 2.437 | - | - |
0.3989 | 8000 | 2.3406 | - | - |
0.4488 | 9000 | 2.2709 | - | - |
0.4986 | 10000 | 2.1881 | 0.5131 | - |
0.5485 | 11000 | 2.1627 | - | - |
0.5984 | 12000 | 2.1055 | - | - |
0.6482 | 13000 | 2.0577 | - | - |
0.6981 | 14000 | 2.0133 | - | - |
0.7479 | 15000 | 1.9877 | 0.5130 | - |
0.7978 | 16000 | 1.9569 | - | - |
0.8477 | 17000 | 1.9219 | - | - |
0.8975 | 18000 | 1.9124 | - | - |
0.9474 | 19000 | 1.8676 | - | - |
0.9973 | 20000 | 1.8461 | 0.5058 | - |
-1 | -1 | - | - | 0.5826 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.190 kWh
- Carbon Emitted: 0.074 kg of CO2
- Hours Used: 0.64 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.4.0.dev0
- Transformers: 4.48.0.dev0
- PyTorch: 2.5.0+cu121
- Accelerate: 0.35.0.dev0
- Datasets: 2.20.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
DenoisingAutoEncoderLoss
@inproceedings{wang-2021-TSDAE,
title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
pages = "671--688",
url = "https://arxiv.org/abs/2104.06979",
}