Reranker Models for GooAQ
Collection
https://huggingface.co/blog/train-reranker
•
4 items
•
Updated
•
1
This is a Cross Encoder model finetuned from answerdotai/ModernBERT-large using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
See training_gooaq_bce.py for the training script - only the base model was updated from answerdotai/ModernBERT-base to answerdotai/ModernBERT-large. This script is also described in the Cross Encoder > Training Overview documentation and the Training and Finetuning Reranker Models with Sentence Transformers v4 blogpost.
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("tomaarsen/reranker-ModernBERT-large-gooaq-bce")
# Get scores for pairs of texts
pairs = [
['what are the characteristics and elements of poetry?', 'The elements of poetry include meter, rhyme, form, sound, and rhythm (timing). Different poets use these elements in many different ways.'],
['what are the characteristics and elements of poetry?', "What's the first rule of writing poetry? That there are no rules — it's all up to you! Of course there are different poetic forms and devices, and free verse poems are one of the many poetic styles; they have no structure when it comes to format or even rhyming."],
['what are the characteristics and elements of poetry?', "['Blank verse. Blank verse is poetry written with a precise meter—almost always iambic pentameter—that does not rhyme. ... ', 'Rhymed poetry. In contrast to blank verse, rhymed poems rhyme by definition, although their scheme varies. ... ', 'Free verse. ... ', 'Epics. ... ', 'Narrative poetry. ... ', 'Haiku. ... ', 'Pastoral poetry. ... ', 'Sonnet.']"],
['what are the characteristics and elements of poetry?', 'The main component of poetry is its meter (the regular pattern of strong and weak stress). When a poem has a recognizable but varying pattern of stressed and unstressed syllables, the poetry is written in verse. ... There are many possible patterns of verse, and the basic pattern of each unit is called a foot.'],
['what are the characteristics and elements of poetry?', "Some poetry may not make sense to you. But that's because poets don't write to be understood by others. They write because they must. The feelings and emotions that reside within them need to be expressed."],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'what are the characteristics and elements of poetry?',
[
'The elements of poetry include meter, rhyme, form, sound, and rhythm (timing). Different poets use these elements in many different ways.',
"What's the first rule of writing poetry? That there are no rules — it's all up to you! Of course there are different poetic forms and devices, and free verse poems are one of the many poetic styles; they have no structure when it comes to format or even rhyming.",
"['Blank verse. Blank verse is poetry written with a precise meter—almost always iambic pentameter—that does not rhyme. ... ', 'Rhymed poetry. In contrast to blank verse, rhymed poems rhyme by definition, although their scheme varies. ... ', 'Free verse. ... ', 'Epics. ... ', 'Narrative poetry. ... ', 'Haiku. ... ', 'Pastoral poetry. ... ', 'Sonnet.']",
'The main component of poetry is its meter (the regular pattern of strong and weak stress). When a poem has a recognizable but varying pattern of stressed and unstressed syllables, the poetry is written in verse. ... There are many possible patterns of verse, and the basic pattern of each unit is called a foot.',
"Some poetry may not make sense to you. But that's because poets don't write to be understood by others. They write because they must. The feelings and emotions that reside within them need to be expressed.",
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
gooaq-dev
CrossEncoderRerankingEvaluator
with these parameters:{
"at_k": 10,
"always_rerank_positives": false
}
Metric | Value |
---|---|
map | 0.7586 (+0.2275) |
mrr@10 | 0.7576 (+0.2336) |
ndcg@10 | 0.7946 (+0.2034) |
gooaq-dev
CrossEncoderRerankingEvaluator
with these parameters:{
"at_k": 10,
"always_rerank_positives": true
}
Metric | Value |
---|---|
map | 0.8176 (+0.2865) |
mrr@10 | 0.8166 (+0.2926) |
ndcg@10 | 0.8581 (+0.2669) |
NanoMSMARCO_R100
, NanoNFCorpus_R100
and NanoNQ_R100
CrossEncoderRerankingEvaluator
with these parameters:{
"at_k": 10,
"always_rerank_positives": true
}
Metric | NanoMSMARCO_R100 | NanoNFCorpus_R100 | NanoNQ_R100 |
---|---|---|---|
map | 0.5488 (+0.0592) | 0.3682 (+0.1072) | 0.6103 (+0.1907) |
mrr@10 | 0.5443 (+0.0668) | 0.5677 (+0.0678) | 0.6108 (+0.1841) |
ndcg@10 | 0.6323 (+0.0918) | 0.4136 (+0.0886) | 0.6570 (+0.1564) |
NanoBEIR_R100_mean
CrossEncoderNanoBEIREvaluator
with these parameters:{
"dataset_names": [
"msmarco",
"nfcorpus",
"nq"
],
"rerank_k": 100,
"at_k": 10,
"always_rerank_positives": true
}
Metric | Value |
---|---|
map | 0.5091 (+0.1190) |
mrr@10 | 0.5743 (+0.1063) |
ndcg@10 | 0.5676 (+0.1123) |
question
, answer
, and label
question | answer | label | |
---|---|---|---|
type | string | string | int |
details |
|
|
|
question | answer | label |
---|---|---|
what are the characteristics and elements of poetry? |
The elements of poetry include meter, rhyme, form, sound, and rhythm (timing). Different poets use these elements in many different ways. |
1 |
what are the characteristics and elements of poetry? |
What's the first rule of writing poetry? That there are no rules — it's all up to you! Of course there are different poetic forms and devices, and free verse poems are one of the many poetic styles; they have no structure when it comes to format or even rhyming. |
0 |
what are the characteristics and elements of poetry? |
['Blank verse. Blank verse is poetry written with a precise meter—almost always iambic pentameter—that does not rhyme. ... ', 'Rhymed poetry. In contrast to blank verse, rhymed poems rhyme by definition, although their scheme varies. ... ', 'Free verse. ... ', 'Epics. ... ', 'Narrative poetry. ... ', 'Haiku. ... ', 'Pastoral poetry. ... ', 'Sonnet.'] |
0 |
BinaryCrossEntropyLoss
with these parameters:{
"activation_fn": "torch.nn.modules.linear.Identity",
"pos_weight": 5
}
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1seed
: 12bf16
: Truedataloader_num_workers
: 4load_best_model_at_end
: Trueoverwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 12data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 4dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
: auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportionalEpoch | Step | Training Loss | gooaq-dev_ndcg@10 | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 |
---|---|---|---|---|---|---|---|
-1 | -1 | - | 0.1279 (-0.4633) | 0.0555 (-0.4849) | 0.1735 (-0.1516) | 0.0686 (-0.4320) | 0.0992 (-0.3562) |
0.0001 | 1 | 1.2592 | - | - | - | - | - |
0.0221 | 200 | 1.1826 | - | - | - | - | - |
0.0443 | 400 | 0.7653 | - | - | - | - | - |
0.0664 | 600 | 0.6423 | - | - | - | - | - |
0.0885 | 800 | 0.6 | - | - | - | - | - |
0.1106 | 1000 | 0.5753 | 0.7444 (+0.1531) | 0.5365 (-0.0039) | 0.4249 (+0.0998) | 0.6111 (+0.1105) | 0.5242 (+0.0688) |
0.1328 | 1200 | 0.5313 | - | - | - | - | - |
0.1549 | 1400 | 0.5315 | - | - | - | - | - |
0.1770 | 1600 | 0.5195 | - | - | - | - | - |
0.1992 | 1800 | 0.5136 | - | - | - | - | - |
0.2213 | 2000 | 0.4782 | 0.7774 (+0.1862) | 0.6080 (+0.0676) | 0.4371 (+0.1120) | 0.6520 (+0.1513) | 0.5657 (+0.1103) |
0.2434 | 2200 | 0.5026 | - | - | - | - | - |
0.2655 | 2400 | 0.5011 | - | - | - | - | - |
0.2877 | 2600 | 0.4893 | - | - | - | - | - |
0.3098 | 2800 | 0.4855 | - | - | - | - | - |
0.3319 | 3000 | 0.4687 | 0.7692 (+0.1779) | 0.6181 (+0.0777) | 0.4273 (+0.1023) | 0.6686 (+0.1679) | 0.5713 (+0.1160) |
0.3541 | 3200 | 0.4619 | - | - | - | - | - |
0.3762 | 3400 | 0.4626 | - | - | - | - | - |
0.3983 | 3600 | 0.4504 | - | - | - | - | - |
0.4204 | 3800 | 0.4435 | - | - | - | - | - |
0.4426 | 4000 | 0.4573 | 0.7776 (+0.1864) | 0.6589 (+0.1184) | 0.4262 (+0.1012) | 0.6634 (+0.1628) | 0.5828 (+0.1275) |
0.4647 | 4200 | 0.4608 | - | - | - | - | - |
0.4868 | 4400 | 0.4275 | - | - | - | - | - |
0.5090 | 4600 | 0.4317 | - | - | - | - | - |
0.5311 | 4800 | 0.4427 | - | - | - | - | - |
0.5532 | 5000 | 0.4245 | 0.7795 (+0.1883) | 0.6021 (+0.0617) | 0.4387 (+0.1137) | 0.6560 (+0.1553) | 0.5656 (+0.1102) |
0.5753 | 5200 | 0.4243 | - | - | - | - | - |
0.5975 | 5400 | 0.4295 | - | - | - | - | - |
0.6196 | 5600 | 0.422 | - | - | - | - | - |
0.6417 | 5800 | 0.4165 | - | - | - | - | - |
0.6639 | 6000 | 0.4281 | 0.7859 (+0.1946) | 0.6404 (+0.1000) | 0.4449 (+0.1199) | 0.6458 (+0.1451) | 0.5770 (+0.1217) |
0.6860 | 6200 | 0.4155 | - | - | - | - | - |
0.7081 | 6400 | 0.4189 | - | - | - | - | - |
0.7303 | 6600 | 0.4066 | - | - | - | - | - |
0.7524 | 6800 | 0.4114 | - | - | - | - | - |
0.7745 | 7000 | 0.4111 | 0.7875 (+0.1963) | 0.6358 (+0.0954) | 0.4289 (+0.1038) | 0.6358 (+0.1351) | 0.5668 (+0.1114) |
0.7966 | 7200 | 0.3949 | - | - | - | - | - |
0.8188 | 7400 | 0.4019 | - | - | - | - | - |
0.8409 | 7600 | 0.395 | - | - | - | - | - |
0.8630 | 7800 | 0.3885 | - | - | - | - | - |
0.8852 | 8000 | 0.3991 | 0.7946 (+0.2034) | 0.6323 (+0.0918) | 0.4136 (+0.0886) | 0.6570 (+0.1564) | 0.5676 (+0.1123) |
0.9073 | 8200 | 0.3894 | - | - | - | - | - |
0.9294 | 8400 | 0.392 | - | - | - | - | - |
0.9515 | 8600 | 0.3853 | - | - | - | - | - |
0.9737 | 8800 | 0.3691 | - | - | - | - | - |
0.9958 | 9000 | 0.3784 | 0.7936 (+0.2024) | 0.6481 (+0.1077) | 0.4211 (+0.0961) | 0.6439 (+0.1433) | 0.5711 (+0.1157) |
-1 | -1 | - | 0.7946 (+0.2034) | 0.6323 (+0.0918) | 0.4136 (+0.0886) | 0.6570 (+0.1564) | 0.5676 (+0.1123) |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Base model
answerdotai/ModernBERT-large