Static Embeddings with BEE-spoke-data/wordpiece-tokenizer-32k-en_code-msp tokenizer finetuned on GooAQ pairs

This is a sentence-transformers model trained on the gooaq dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Maximum Sequence Length: inf tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): StaticEmbedding(
    (embedding): EmbeddingBag(31999, 1024, mode='mean')
  )
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/static-BEE-spoke-data-tokenizer-v1-gooaq")
# Run inference
sentences = [
    "how to reverse a video on tiktok that's not yours?",
    '[\'Tap "Effects" at the bottom of your screen — it\\\'s an icon that looks like a clock. Open the Effects menu. ... \', \'At the end of the new list that appears, tap "Time." Select "Time" at the end. ... \', \'Select "Reverse" — you\\\'ll then see a preview of your new, reversed video appear on the screen.\']',
    'Relative age is the age of a rock layer (or the fossils it contains) compared to other layers. It can be determined by looking at the position of rock layers. Absolute age is the numeric age of a layer of rocks or fossils. Absolute age can be determined by using radiometric dating.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.6374
cosine_accuracy@3 0.8431
cosine_accuracy@5 0.9006
cosine_accuracy@10 0.9474
cosine_precision@1 0.6374
cosine_precision@3 0.281
cosine_precision@5 0.1801
cosine_precision@10 0.0947
cosine_recall@1 0.6374
cosine_recall@3 0.8431
cosine_recall@5 0.9006
cosine_recall@10 0.9474
cosine_ndcg@10 0.7979
cosine_mrr@10 0.7492
cosine_map@100 0.7516

Information Retrieval

Metric Value
cosine_accuracy@1 0.6324
cosine_accuracy@3 0.8382
cosine_accuracy@5 0.899
cosine_accuracy@10 0.9452
cosine_precision@1 0.6324
cosine_precision@3 0.2794
cosine_precision@5 0.1798
cosine_precision@10 0.0945
cosine_recall@1 0.6324
cosine_recall@3 0.8382
cosine_recall@5 0.899
cosine_recall@10 0.9452
cosine_ndcg@10 0.7945
cosine_mrr@10 0.7455
cosine_map@100 0.748

Information Retrieval

Metric Value
cosine_accuracy@1 0.6273
cosine_accuracy@3 0.8299
cosine_accuracy@5 0.8919
cosine_accuracy@10 0.9414
cosine_precision@1 0.6273
cosine_precision@3 0.2766
cosine_precision@5 0.1784
cosine_precision@10 0.0941
cosine_recall@1 0.6273
cosine_recall@3 0.8299
cosine_recall@5 0.8919
cosine_recall@10 0.9414
cosine_ndcg@10 0.7888
cosine_mrr@10 0.7392
cosine_map@100 0.7418

Information Retrieval

Metric Value
cosine_accuracy@1 0.6009
cosine_accuracy@3 0.8112
cosine_accuracy@5 0.874
cosine_accuracy@10 0.9296
cosine_precision@1 0.6009
cosine_precision@3 0.2704
cosine_precision@5 0.1748
cosine_precision@10 0.093
cosine_recall@1 0.6009
cosine_recall@3 0.8112
cosine_recall@5 0.874
cosine_recall@10 0.9296
cosine_ndcg@10 0.7688
cosine_mrr@10 0.7167
cosine_map@100 0.7196

Information Retrieval

Metric Value
cosine_accuracy@1 0.5589
cosine_accuracy@3 0.7641
cosine_accuracy@5 0.8367
cosine_accuracy@10 0.8995
cosine_precision@1 0.5589
cosine_precision@3 0.2547
cosine_precision@5 0.1673
cosine_precision@10 0.09
cosine_recall@1 0.5589
cosine_recall@3 0.7641
cosine_recall@5 0.8367
cosine_recall@10 0.8995
cosine_ndcg@10 0.7291
cosine_mrr@10 0.6743
cosine_map@100 0.6782

Information Retrieval

Metric Value
cosine_accuracy@1 0.4745
cosine_accuracy@3 0.6696
cosine_accuracy@5 0.7508
cosine_accuracy@10 0.8302
cosine_precision@1 0.4745
cosine_precision@3 0.2232
cosine_precision@5 0.1502
cosine_precision@10 0.083
cosine_recall@1 0.4745
cosine_recall@3 0.6696
cosine_recall@5 0.7508
cosine_recall@10 0.8302
cosine_ndcg@10 0.6483
cosine_mrr@10 0.5904
cosine_map@100 0.5962

Training Details

Training Dataset

gooaq

  • Dataset: gooaq at b089f72
  • Size: 3,002,496 training samples
  • Columns: question and answer
  • Approximate statistics based on the first 1000 samples:
    question answer
    type string string
    details
    • min: 18 characters
    • mean: 43.23 characters
    • max: 96 characters
    • min: 55 characters
    • mean: 253.36 characters
    • max: 371 characters
  • Samples:
    question answer
    what is the difference between broilers and layers? An egg laying poultry is called egger or layer whereas broilers are reared for obtaining meat. So a layer should be able to produce more number of large sized eggs, without growing too much. On the other hand, a broiler should yield more meat and hence should be able to grow well.
    what is the difference between chronological order and spatial order? As a writer, you should always remember that unlike chronological order and the other organizational methods for data, spatial order does not take into account the time. Spatial order is primarily focused on the location. All it does is take into account the location of objects and not the time.
    is kamagra same as viagra? Kamagra is thought to contain the same active ingredient as Viagra, sildenafil citrate. In theory, it should work in much the same way as Viagra, taking about 45 minutes to take effect, and lasting for around 4-6 hours. However, this will vary from person to person.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            1024,
            512,
            256,
            128,
            64,
            32
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Evaluation Dataset

gooaq

  • Dataset: gooaq at b089f72
  • Size: 10,000 evaluation samples
  • Columns: question and answer
  • Approximate statistics based on the first 1000 samples:
    question answer
    type string string
    details
    • min: 18 characters
    • mean: 43.17 characters
    • max: 98 characters
    • min: 51 characters
    • mean: 254.12 characters
    • max: 360 characters
  • Samples:
    question answer
    how do i program my directv remote with my tv? ['Press MENU on your remote.', 'Select Settings & Help > Settings > Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you wish to program. ... ', 'Follow the on-screen prompts to complete programming.']
    are rodrigues fruit bats nocturnal? Before its numbers were threatened by habitat destruction, storms, and hunting, some of those groups could number 500 or more members. Sunrise, sunset. Rodrigues fruit bats are most active at dawn, at dusk, and at night.
    why does your heart rate increase during exercise bbc bitesize? During exercise there is an increase in physical activity and muscle cells respire more than they do when the body is at rest. The heart rate increases during exercise. The rate and depth of breathing increases - this makes sure that more oxygen is absorbed into the blood, and more carbon dioxide is removed from it.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            1024,
            512,
            256,
            128,
            64,
            32
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 2048
  • per_device_eval_batch_size: 2048
  • learning_rate: 0.2
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 2048
  • per_device_eval_batch_size: 2048
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 0.2
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss gooaq-1024-dev_cosine_ndcg@10 gooaq-512-dev_cosine_ndcg@10 gooaq-256-dev_cosine_ndcg@10 gooaq-128-dev_cosine_ndcg@10 gooaq-64-dev_cosine_ndcg@10 gooaq-32-dev_cosine_ndcg@10
-1 -1 - - 0.2283 0.2131 0.1847 0.1395 0.0746 0.0334
0.0007 1 44.3995 - - - - - - -
0.0682 100 20.4944 - - - - - - -
0.1363 200 5.7432 - - - - - - -
0.1704 250 - 1.6135 0.7337 0.7307 0.7204 0.7006 0.6527 0.5522
0.2045 300 4.6818 - - - - - - -
0.2727 400 4.237 - - - - - - -
0.3408 500 3.9465 1.3375 0.7628 0.7601 0.7544 0.7340 0.6917 0.6024
0.4090 600 3.724 - - - - - - -
0.4772 700 3.5496 - - - - - - -
0.5112 750 - 1.2214 0.7782 0.7764 0.7676 0.7492 0.7075 0.6208
0.5453 800 3.4443 - - - - - - -
0.6135 900 3.3312 - - - - - - -
0.6817 1000 3.2537 1.1280 0.7877 0.7841 0.7768 0.7582 0.7195 0.6336
0.7498 1100 3.1613 - - - - - - -
0.8180 1200 3.0985 - - - - - - -
0.8521 1250 - 1.0693 0.7955 0.7922 0.7858 0.7663 0.7267 0.6434
0.8862 1300 3.0416 - - - - - - -
0.9543 1400 3.0249 - - - - - - -
-1 -1 - - 0.7979 0.7945 0.7888 0.7688 0.7291 0.6483

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.026 kWh
  • Carbon Emitted: 0.010 kg of CO2
  • Hours Used: 0.173 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 4.1.0.dev0
  • Transformers: 4.49.0
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.1
  • Datasets: 3.3.2
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train tomaarsen/static-BEE-spoke-data-tokenizer-v1-gooaq

Evaluation results