Add pipeline tag and library name to metadata

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +253 -3
README.md CHANGED
@@ -1,3 +1,253 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ pipeline_tag: image-to-video
4
+ library_name: pytorch
5
+ ---
6
+
7
+ <h1 align="center">KeySync: A Robust Approach for Leakage-free Lip Synchronization in High Resolution</h1>
8
+
9
+ <div align="center">
10
+ <a href="https://scholar.google.com/citations?user=LuIdiV8AAAAJ" target="_blank">Antoni Bigata</a><sup>1</sup>&emsp;
11
+ <a href="https://scholar.google.com/citations?user=08YfKjcAAAAJ" target="_blank">Rodrigo Mira</a><sup>1</sup>&emsp;
12
+ <a href="https://scholar.google.com/citations?user=zdg4dj0AAAAJ" target="_blank">Stella Bounareli</a><sup>1</sup>&emsp;
13
+ <a href="https://scholar.google.com/citations?user=ty2OYvcAAAAJ" target="_blank">Michał Stypułkowski</a><sup>2</sup>&emsp;
14
+ <a href="https://scholar.google.com/citations?user=WwLpK44AAAAJ" target="_blank">Konstantinos Vougioukas</a><sup>1</sup>&emsp;
15
+ <a href="https://scholar.google.com/citations?user=6v-UKEMAAAAJ" target="_blank">Stavros Petridis</a><sup>1</sup>&emsp;
16
+ <a href="https://scholar.google.com/citations?user=ygpxbK8AAAAJ" target="_blank">Maja Pantic</a><sup>1</sup>
17
+ </div>
18
+
19
+ <br>
20
+
21
+ <div align="center">
22
+ <div class="is-size-5 publication-authors" style="margin-top: 1rem;">
23
+ <span class="author-block"><sup>1</sup>Imperial College London,</span>
24
+ <span class="author-block"><sup>2</sup>University of Wrocław,</span>
25
+ </div>
26
+ </div>
27
+
28
+ <br>
29
+
30
+ <div align="center">
31
+ <a href="https://antonibigata.github.io/KeySync/"><img src="https://img.shields.io/badge/Project-Page-blue"></a>
32
+ &nbsp;&nbsp;&nbsp;
33
+ <a href="https://huggingface.co/toninio19/keysync"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Model-yellow"></a>
34
+ &nbsp;&nbsp;&nbsp;
35
+ <a href="https://huggingface.co/spaces/toninio19/keysync-demo"><img src=https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Demo-yellow></a>
36
+ &nbsp;&nbsp;&nbsp;
37
+ <a href="https://arxiv.org/abs/2505.00497"><img src="https://img.shields.io/badge/Paper-Arxiv-red"></a>
38
+ </div>
39
+
40
+ ## 📋 Table of Contents
41
+ - [Abstract](#abstract)
42
+ - [Demo Examples](#demo-examples)
43
+ - [Architecture](#architecture)
44
+ - [Installation](#installation)
45
+ - [Quick Start Guide](#quick-start-guide)
46
+ - [Advanced Usage](#advanced-usage)
47
+ - [Citation](#citation)
48
+ - [Acknowledgements](#acknowledgements)
49
+
50
+ ## Abstract
51
+
52
+ Lip synchronization, known as the task of aligning lip movements in an existing video with new input audio, is typically framed as a simpler variant of audio-driven facial animation. However, as well as suffering from the usual issues in talking head generation (e.g., temporal consistency), lip synchronization presents significant new challenges such as expression leakage from the input video and facial occlusions, which can severely impact real-world applications like automated dubbing, but are often neglected in existing works. To address these shortcomings, we present
53
+ KeySync, a two-stage framework that succeeds in solving the issue of temporal consistency, while also incorporating solutions for leakage and occlusions using a carefully designed masking strategy. We show that KeySync achieves state-of-the-art results in lip reconstruction and cross-synchronization, improving visual quality and reducing expression leakage according to LipLeak, our novel leakage metric. Furthermore, we demonstrate the effectivness of our new masking approach in handling occlusions and validate our architectural choices through several ablation studies.
54
+
55
+ ### Media
56
+
57
+ <table>
58
+ <tr>
59
+ <td><img src="assets/media/vid_dub_1.gif" alt="Video 1"/></td>
60
+ <td><img src="assets/media/vid_dub_2.gif" alt="Video 2"/></td>
61
+ <td><img src="assets/media/vid_dub_3.gif" alt="Video 3"/></td>
62
+ <td><img src="assets/media/vid_dub_4.gif" alt="Video 4"/></td>
63
+ </tr>
64
+ </table>
65
+
66
+ For more visualizations, please visit [https://antonibigata.github.io/KeySync/](https://antonibigata.github.io/KeySync/)
67
+
68
+ ### Online Demo
69
+
70
+ We provide an interactive demo of KeySync at [https://huggingface.co/spaces/toninio19/keysync-demo](https://huggingface.co/spaces/toninio19/keysync-demo) where you can upload your own video and audio files to create synchronized videos. Due to GPU restrictions on Hugging Face Spaces, the demo is limited to processing videos of maximum 6 seconds in length. For longer videos or better performance, we recommend using the inference scripts provided in this repository to run KeySync locally on your own hardware.
71
+
72
+ ## Architecture
73
+
74
+ <div align="center">
75
+ <img src="assets/media/drawing-1.png" width="100%">
76
+ </div>
77
+
78
+ ## Installation
79
+
80
+ ### Prerequisites
81
+ - CUDA-compatible GPU
82
+ - Python 3.11
83
+ - Conda package manager
84
+
85
+ ### Setup Environment
86
+
87
+ ```bash
88
+ # Create conda environment with necessary dependencies
89
+ conda create -n KeySync python=3.11 nvidia::cuda-nvcc conda-forge::ffmpeg -y
90
+ conda activate KeySync
91
+
92
+ # Install requirements
93
+ python -m pip install -r requirements.txt --no-deps
94
+
95
+ # Install PyTorch with CUDA support
96
+ python -m pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 --index-url https://download.pytorch.org/whl/cu121
97
+
98
+ # OPTIONAL
99
+ git clone https://github.com/facebookresearch/sam2.git && cd sam2
100
+
101
+ pip install -e . --no-deps
102
+ ```
103
+
104
+ ### Known Issues
105
+
106
+ If you encounter synchronization issues between omegaconf and antlr4, you can fix them by running:
107
+
108
+
109
+ ```bash
110
+ python -m pip uninstall omegaconf antlr4-python3-runtime -y
111
+ python -m pip install "omegaconf==2.3.0" "antlr4-python3-runtime==4.9.3"
112
+ ```
113
+
114
+
115
+ ### Download Pretrained Models
116
+
117
+ ```bash
118
+ git lfs install
119
+ git clone https://huggingface.co/toninio19/keysync pretrained_models
120
+ ```
121
+
122
+ ## Quick Start Guide
123
+
124
+ ### 1. Data Preparation
125
+
126
+ To use KeySync with your own data, for simplicity organize your files as follows:
127
+ - Place video files (`.mp4`) in the `data/videos/` directory
128
+ - Place audio files (`.wav`) in the `data/audios/` directory
129
+
130
+ Otherwise you need to specify a different video_dir and audio_dir.
131
+
132
+ ### 2. Running Inference
133
+
134
+ For inference you need to have the audio and video embeddings precomputed.
135
+ The simplest way to run inference on your own data is using the `infer_raw.sh` script which will compute those embeddings for you:
136
+
137
+ ```bash
138
+ bash scripts/infer_raw_data.sh \
139
+ --filelist "data/videos" \
140
+ --file_list_audio "data/audios" \
141
+ --output_folder "my_animations" \
142
+ --keyframes_ckpt "path/to/keyframes_model.ckpt" \
143
+ --interpolation_ckpt "path/to/interpolation_model.ckpt" \
144
+ --compute_until 45
145
+ ```
146
+
147
+ This script handles the entire pipeline:
148
+ 1. Extracts video embeddings
149
+ 2. Computes landmarks
150
+ 3. Computes audio embeddings (using WavLM, and Hubert)
151
+ 4. Creates a filelist for inference
152
+ 5. Runs the full animation pipeline
153
+
154
+ For more control over the inference process, you can directly use the `inference.sh` script:
155
+
156
+ ```bash
157
+ bash scripts/inference.sh \
158
+ --output_folder "output_folder_name" \
159
+ --file_list "path/to/filelist.txt" \
160
+ --keyframes_ckpt "path/to/keyframes_model.ckpt" \
161
+ --interpolation_ckpt "path/to/interpolation_model.ckpt" \
162
+ --compute_until "compute_until"
163
+ ```
164
+
165
+ or if you need to also save intermediate embeddings for faster recompute
166
+
167
+ ```bash
168
+ bash scripts/infer_and_compute_emb.sh \
169
+ --filelist "data/videos" \
170
+ --file_list_audio "data/audios" \
171
+ --output_folder "my_animations" \
172
+ --keyframes_ckpt "path/to/keyframes_model.ckpt" \
173
+ --interpolation_ckpt "path/to/interpolation_model.ckpt" \
174
+ --compute_until 45
175
+ ```
176
+
177
+ ### 3. Training Your Own Models
178
+
179
+ The dataloader needs the path to all the videos you want to train on. Then you need to separate the audio and video as follows:
180
+ - root_folder:
181
+ - videos: raw videos
182
+ - videos_emb: embedding for your videos
183
+ - audios: raw audios
184
+ - audios_emb: precomputed embeddigns for the audios
185
+ - landmarks_folder: landmarks computed from raw video
186
+
187
+ You can have different folders but make sure to change them in the training scripts.
188
+
189
+ KeySYnc uses a two-stage model approach. You can train each component separately:
190
+
191
+ #### KeySync Model Training
192
+
193
+ ```bash
194
+ bash train_keyframe.sh path/to/filelist.txt [num_workers] [batch_size] [num_devices]
195
+ ```
196
+
197
+ #### Interpolation Model Training
198
+
199
+ ```bash
200
+ bash train_interpolation.sh path/to/filelist.txt [num_workers] [batch_size] [num_devices]
201
+ ```
202
+
203
+ ## Advanced Usage
204
+
205
+ ### Command Line Parameters
206
+
207
+ | Parameter | Description | Default |
208
+ |-----------|-------------|---------|
209
+ | `video_dir` | Directory with input videos | `data/videos` |
210
+ | `audio_dir` | Directory with input audio files | `data/audios` |
211
+ | `output_folder` | Where to save generated animations | - |
212
+ | `keyframes_ckpt` | Keyframe model checkpoint path | - |
213
+ | `interpolation_ckpt` | Interpolation model checkpoint path | - |
214
+ | `compute_until` | Animation length in seconds | 45 |
215
+ | `fix_occlusion` | Enable occlusion handling to mask objects that block the face | False |
216
+ | `position` | Coordinates of the object to mask in the occlusion pipeline (format: x,y, e.g., "450,450") | None |
217
+ | `start_frame` | Frame number where the specified position coordinates apply (using the first frame typically works best) | 0 |
218
+
219
+ ### Advanced Configuration
220
+
221
+ For more fine-grained control, you can edit the configuration files in the `configs/` directory.
222
+
223
+ ## LipScore Evaluation
224
+
225
+ KeySync can be evaluated using the LipScore metric available in the `evaluation/` folder. This metric measures the lip synchronization quality between generated and ground truth videos.
226
+
227
+ To use the LipScore evaluation, you'll need to install the following dependencies:
228
+
229
+ 1. Face detection library: [https://github.com/hhj1897/face_detection](https://github.com/hhj1897/face_detection)
230
+ 2. Face alignment library: [https://github.com/ibug-group/face_alignment](https://github.com/ibug-group/face_alignment)
231
+
232
+ Once installed, you can use the LipScore class in `evaluation/lipscore.py` to evaluate your generated animations:
233
+
234
+
235
+ ## Citation
236
+
237
+ If you use KeySync in your research, please cite our paper:
238
+
239
+ ```bibtex
240
+ @misc{bigata2025keysyncrobustapproachleakagefree,
241
+ title={KeySync: A Robust Approach for Leakage-free Lip Synchronization in High Resolution},
242
+ author={Antoni Bigata and Rodrigo Mira and Stella Bounareli and Michał Stypułkowski and Konstantinos Vougioukas and Stavros Petridis and Maja Pantic},
243
+ year={2025},
244
+ eprint={2505.00497},
245
+ archivePrefix={arXiv},
246
+ primaryClass={cs.CV},
247
+ url={https://arxiv.org/abs/2505.00497},
248
+ }
249
+ ```
250
+
251
+ ## Acknowledgements
252
+
253
+ This project builds upon the foundation provided by [Stability AI's Generative Models](https://github.com/Stability-AI/generative-models). We thank the Stability AI team for their excellent work and for making their code publicly available.