|
--- |
|
base_model: llm-jp/llm-jp-3-13b |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- unsloth |
|
- llama |
|
- trl |
|
license: apache-2.0 |
|
language: |
|
- ja |
|
datasets: |
|
- kinokokoro/ichikara-instruction-003 |
|
--- |
|
|
|
# Uploaded model |
|
|
|
- **Developed by:** trikudayodayodayo |
|
- **License:** apache-2.0 |
|
- **Finetuned from model :** llm-jp/llm-jp-3-13b |
|
|
|
# Overview |
|
This repository provides a Japanese Large Language Model finetuned on ichikara datasets |
|
|
|
# supervised-fintuning |
|
Thme model was finetuned on a subset from mxture of the following dataset. |
|
Training epoch:1 |
|
- ichikara-instruction-003-001-1 |
|
- ichikara-instruction-003-001-2 |
|
- ichikara-instruction-003-001-2.2 |
|
- ichikara-instruction-003-003-5.1 |
|
- ichikara-instruction-003-003-5.2 |
|
- ichikara-instruction-003-002-1 |
|
- ichikara-instruction-003-003-1 |
|
|
|
Authors |
|
tsuchida rikuto |
|
|
|
How to Use |
|
To use this model, run the code below |
|
```python |
|
!pip install -U bitsandbytes |
|
!pip install -U transformers |
|
!pip install -U accelerate |
|
!pip install -U datasets |
|
|
|
!pip install ipywidgets --upgrade |
|
|
|
from transformers import ( |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
BitsAndBytesConfig, |
|
) |
|
import torch |
|
from tqdm import tqdm |
|
import json |
|
|
|
|
|
model_name = "trikudayodayodayo/llm-jp-3-13b-it-1209_lora" |
|
|
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
bnb_4bit_use_double_quant=False, |
|
) |
|
|
|
HF_TOKEN="Type your HF_TOKEN" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
quantization_config=bnb_config, |
|
device_map="auto", |
|
token = HF_TOKEN |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, token = HF_TOKEN) |
|
|
|
input = "Type text here" |
|
|
|
tokenized_input = tokenizer.encode(input, add_special_tokens=False, return_tensors="pt").to(model.device) |
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
tokenized_input, |
|
max_new_tokens=100, |
|
do_sample=False, |
|
repetition_penalty=1.2 |
|
)[0] |
|
|
|
output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True) |
|
|
|
print(output) |
|
``` |