tuanio's picture
Model save
a83a8cf verified
metadata
library_name: peft
tags:
  - generated_from_trainer
base_model: vinai/phobert-base
metrics:
  - accuracy
model-index:
  - name: training_sentiment_analysis
    results: []

training_sentiment_analysis

This model is a fine-tuned version of vinai/phobert-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5287
  • Accuracy: 0.7977

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9299 0.21 200 0.8274 0.6387
0.7793 0.43 400 0.6643 0.7188
0.6574 0.64 600 0.5868 0.7659
0.6132 0.86 800 0.5582 0.7723
0.5791 1.07 1000 0.5516 0.7831
0.554 1.28 1200 0.5187 0.7964
0.5258 1.5 1400 0.5126 0.8034
0.5373 1.71 1600 0.5168 0.8003
0.5266 1.93 1800 0.5284 0.8028
0.5076 2.14 2000 0.5178 0.7977
0.5094 2.36 2200 0.5135 0.8028
0.5032 2.57 2400 0.5023 0.8104
0.5034 2.78 2600 0.5088 0.8047
0.4923 3.0 2800 0.5219 0.7996
0.4934 3.21 3000 0.4905 0.8130
0.4798 3.43 3200 0.4908 0.8098
0.4831 3.64 3400 0.4875 0.8073
0.4707 3.85 3600 0.4986 0.8073
0.4674 4.07 3800 0.5196 0.8104
0.4535 4.28 4000 0.4896 0.8098
0.464 4.5 4200 0.5175 0.8079
0.4715 4.71 4400 0.5002 0.8028
0.468 4.93 4600 0.4883 0.8111
0.4645 5.14 4800 0.5187 0.8041
0.445 5.35 5000 0.4928 0.8066
0.4558 5.57 5200 0.4870 0.8079
0.4405 5.78 5400 0.4985 0.8104
0.4648 6.0 5600 0.4842 0.8060
0.435 6.21 5800 0.4911 0.8117
0.437 6.42 6000 0.4854 0.8085
0.4588 6.64 6200 0.4879 0.8085
0.4342 6.85 6400 0.4922 0.8104
0.4347 7.07 6600 0.4911 0.8142
0.4326 7.28 6800 0.4914 0.8079
0.4267 7.49 7000 0.4917 0.8104
0.4241 7.71 7200 0.4887 0.8136
0.4376 7.92 7400 0.5122 0.8079
0.4323 8.14 7600 0.4909 0.8098
0.4264 8.35 7800 0.4882 0.8142
0.4175 8.57 8000 0.5091 0.8053
0.4228 8.78 8200 0.5060 0.8098
0.4189 8.99 8400 0.4941 0.8092
0.4161 9.21 8600 0.5010 0.8174
0.4078 9.42 8800 0.4949 0.8079
0.4201 9.64 9000 0.5017 0.8073
0.4141 9.85 9200 0.4985 0.8092
0.4132 10.06 9400 0.5032 0.8053
0.4043 10.28 9600 0.5038 0.8130
0.4187 10.49 9800 0.4981 0.8104
0.3827 10.71 10000 0.5126 0.8073
0.4074 10.92 10200 0.5088 0.8073
0.4013 11.13 10400 0.5061 0.8073
0.3888 11.35 10600 0.5013 0.8085
0.3855 11.56 10800 0.4993 0.8060
0.3924 11.78 11000 0.5075 0.8085
0.4046 11.99 11200 0.4999 0.8028
0.3957 12.21 11400 0.5089 0.8034
0.381 12.42 11600 0.5208 0.8073
0.3906 12.63 11800 0.5137 0.8066
0.3734 12.85 12000 0.5183 0.8041
0.3928 13.06 12200 0.5069 0.8066
0.3774 13.28 12400 0.5086 0.8009
0.3892 13.49 12600 0.4967 0.8060
0.372 13.7 12800 0.5043 0.8041
0.388 13.92 13000 0.5095 0.8073
0.3754 14.13 13200 0.5104 0.8022
0.3639 14.35 13400 0.5263 0.7983
0.3795 14.56 13600 0.5146 0.8015
0.3792 14.78 13800 0.5066 0.8041
0.3589 14.99 14000 0.5136 0.8079
0.3624 15.2 14200 0.5237 0.8022
0.3659 15.42 14400 0.5166 0.8060
0.3657 15.63 14600 0.5178 0.8003
0.359 15.85 14800 0.5152 0.7983
0.3677 16.06 15000 0.5212 0.8034
0.3521 16.27 15200 0.5324 0.8003
0.3589 16.49 15400 0.5238 0.8041
0.3695 16.7 15600 0.5113 0.7977
0.3606 16.92 15800 0.5137 0.7983
0.3581 17.13 16000 0.5131 0.7996
0.3488 17.34 16200 0.5270 0.7990
0.3499 17.56 16400 0.5236 0.7964
0.3603 17.77 16600 0.5187 0.8003
0.3578 17.99 16800 0.5224 0.8022
0.3449 18.2 17000 0.5228 0.7990
0.3418 18.42 17200 0.5287 0.8009
0.3334 18.63 17400 0.5322 0.7996
0.3567 18.84 17600 0.5294 0.7983
0.3541 19.06 17800 0.5250 0.8003
0.365 19.27 18000 0.5246 0.7983
0.337 19.49 18200 0.5278 0.7977
0.3301 19.7 18400 0.5283 0.7990
0.3421 19.91 18600 0.5287 0.7977

Framework versions

  • PEFT 0.10.0
  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2