BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("willy-arison/bge-base-financial-willy")
# Run inference
sentences = [
    'The topic of the first paper is "Fine-tuning gpt-3 for russian text summarization."',
    'What is the topic of the first paper mentioned in the text?',
    "What is the model's response when the date is changed to September 8, 2030?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.2667
cosine_accuracy@3 0.3333
cosine_accuracy@5 0.3667
cosine_accuracy@10 0.5667
cosine_precision@1 0.2667
cosine_precision@3 0.1111
cosine_precision@5 0.0733
cosine_precision@10 0.0567
cosine_recall@1 0.2667
cosine_recall@3 0.3333
cosine_recall@5 0.3667
cosine_recall@10 0.5667
cosine_ndcg@10 0.3838
cosine_mrr@10 0.3309
cosine_map@100 0.3434

Information Retrieval

Metric Value
cosine_accuracy@1 0.2667
cosine_accuracy@3 0.3333
cosine_accuracy@5 0.3667
cosine_accuracy@10 0.5
cosine_precision@1 0.2667
cosine_precision@3 0.1111
cosine_precision@5 0.0733
cosine_precision@10 0.05
cosine_recall@1 0.2667
cosine_recall@3 0.3333
cosine_recall@5 0.3667
cosine_recall@10 0.5
cosine_ndcg@10 0.3666
cosine_mrr@10 0.3265
cosine_map@100 0.3454

Information Retrieval

Metric Value
cosine_accuracy@1 0.2333
cosine_accuracy@3 0.3333
cosine_accuracy@5 0.3667
cosine_accuracy@10 0.5333
cosine_precision@1 0.2333
cosine_precision@3 0.1111
cosine_precision@5 0.0733
cosine_precision@10 0.0533
cosine_recall@1 0.2333
cosine_recall@3 0.3333
cosine_recall@5 0.3667
cosine_recall@10 0.5333
cosine_ndcg@10 0.358
cosine_mrr@10 0.3059
cosine_map@100 0.3187

Information Retrieval

Metric Value
cosine_accuracy@1 0.2
cosine_accuracy@3 0.3667
cosine_accuracy@5 0.4333
cosine_accuracy@10 0.5333
cosine_precision@1 0.2
cosine_precision@3 0.1222
cosine_precision@5 0.0867
cosine_precision@10 0.0533
cosine_recall@1 0.2
cosine_recall@3 0.3667
cosine_recall@5 0.4333
cosine_recall@10 0.5333
cosine_ndcg@10 0.348
cosine_mrr@10 0.2912
cosine_map@100 0.2984

Information Retrieval

Metric Value
cosine_accuracy@1 0.2667
cosine_accuracy@3 0.3333
cosine_accuracy@5 0.4
cosine_accuracy@10 0.4667
cosine_precision@1 0.2667
cosine_precision@3 0.1111
cosine_precision@5 0.08
cosine_precision@10 0.0467
cosine_recall@1 0.2667
cosine_recall@3 0.3333
cosine_recall@5 0.4
cosine_recall@10 0.4667
cosine_ndcg@10 0.3488
cosine_mrr@10 0.3128
cosine_map@100 0.325

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 264 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 264 samples:
    positive anchor
    type string string
    details
    • min: 3 tokens
    • mean: 15.37 tokens
    • max: 61 tokens
    • min: 9 tokens
    • mean: 18.22 tokens
    • max: 37 tokens
  • Samples:
    positive anchor
    Hospital systems may wish to update an LLM with their current medical guidelines. Give an example of a specific domain or industry that might want to update a language model with their own knowledge.
    The Gemini models struggle to learn a significant proportion of the data even after 20 or 30 epochs. How do the Gemini models perform in learning the training data compared to the OpenAI models?
    Anthropic, Google, OpenAI Which companies have contributed to the rapid iteration and evolution of Large Language Models?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step dim_768_cosine_ndcg@10 dim_512_cosine_ndcg@10 dim_256_cosine_ndcg@10 dim_128_cosine_ndcg@10 dim_64_cosine_ndcg@10
1.0 1 0.3407 0.3622 0.3385 0.3376 0.3703
2.0 2 0.3739 0.3652 0.3634 0.3429 0.3613
3.0 3 0.3742 0.3666 0.3584 0.3495 0.3504
4.0 4 0.3838 0.3666 0.3580 0.3480 0.3488
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.13
  • Sentence Transformers: 4.1.0
  • Transformers: 4.52.4
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.8.1
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
7
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for willy-arison/bge-base-financial-willy

Finetuned
(421)
this model

Evaluation results