BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("willy-arison/bge-base-financial-willy")
# Run inference
sentences = [
'The topic of the first paper is "Fine-tuning gpt-3 for russian text summarization."',
'What is the topic of the first paper mentioned in the text?',
"What is the model's response when the date is changed to September 8, 2030?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 768 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.2667 |
cosine_accuracy@3 | 0.3333 |
cosine_accuracy@5 | 0.3667 |
cosine_accuracy@10 | 0.5667 |
cosine_precision@1 | 0.2667 |
cosine_precision@3 | 0.1111 |
cosine_precision@5 | 0.0733 |
cosine_precision@10 | 0.0567 |
cosine_recall@1 | 0.2667 |
cosine_recall@3 | 0.3333 |
cosine_recall@5 | 0.3667 |
cosine_recall@10 | 0.5667 |
cosine_ndcg@10 | 0.3838 |
cosine_mrr@10 | 0.3309 |
cosine_map@100 | 0.3434 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 512 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.2667 |
cosine_accuracy@3 | 0.3333 |
cosine_accuracy@5 | 0.3667 |
cosine_accuracy@10 | 0.5 |
cosine_precision@1 | 0.2667 |
cosine_precision@3 | 0.1111 |
cosine_precision@5 | 0.0733 |
cosine_precision@10 | 0.05 |
cosine_recall@1 | 0.2667 |
cosine_recall@3 | 0.3333 |
cosine_recall@5 | 0.3667 |
cosine_recall@10 | 0.5 |
cosine_ndcg@10 | 0.3666 |
cosine_mrr@10 | 0.3265 |
cosine_map@100 | 0.3454 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 256 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.2333 |
cosine_accuracy@3 | 0.3333 |
cosine_accuracy@5 | 0.3667 |
cosine_accuracy@10 | 0.5333 |
cosine_precision@1 | 0.2333 |
cosine_precision@3 | 0.1111 |
cosine_precision@5 | 0.0733 |
cosine_precision@10 | 0.0533 |
cosine_recall@1 | 0.2333 |
cosine_recall@3 | 0.3333 |
cosine_recall@5 | 0.3667 |
cosine_recall@10 | 0.5333 |
cosine_ndcg@10 | 0.358 |
cosine_mrr@10 | 0.3059 |
cosine_map@100 | 0.3187 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 128 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.2 |
cosine_accuracy@3 | 0.3667 |
cosine_accuracy@5 | 0.4333 |
cosine_accuracy@10 | 0.5333 |
cosine_precision@1 | 0.2 |
cosine_precision@3 | 0.1222 |
cosine_precision@5 | 0.0867 |
cosine_precision@10 | 0.0533 |
cosine_recall@1 | 0.2 |
cosine_recall@3 | 0.3667 |
cosine_recall@5 | 0.4333 |
cosine_recall@10 | 0.5333 |
cosine_ndcg@10 | 0.348 |
cosine_mrr@10 | 0.2912 |
cosine_map@100 | 0.2984 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 64 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.2667 |
cosine_accuracy@3 | 0.3333 |
cosine_accuracy@5 | 0.4 |
cosine_accuracy@10 | 0.4667 |
cosine_precision@1 | 0.2667 |
cosine_precision@3 | 0.1111 |
cosine_precision@5 | 0.08 |
cosine_precision@10 | 0.0467 |
cosine_recall@1 | 0.2667 |
cosine_recall@3 | 0.3333 |
cosine_recall@5 | 0.4 |
cosine_recall@10 | 0.4667 |
cosine_ndcg@10 | 0.3488 |
cosine_mrr@10 | 0.3128 |
cosine_map@100 | 0.325 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 264 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 264 samples:
positive anchor type string string details - min: 3 tokens
- mean: 15.37 tokens
- max: 61 tokens
- min: 9 tokens
- mean: 18.22 tokens
- max: 37 tokens
- Samples:
positive anchor Hospital systems may wish to update an LLM with their current medical guidelines.
Give an example of a specific domain or industry that might want to update a language model with their own knowledge.
The Gemini models struggle to learn a significant proportion of the data even after 20 or 30 epochs.
How do the Gemini models perform in learning the training data compared to the OpenAI models?
Anthropic, Google, OpenAI
Which companies have contributed to the rapid iteration and evolution of Large Language Models?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|
1.0 | 1 | 0.3407 | 0.3622 | 0.3385 | 0.3376 | 0.3703 |
2.0 | 2 | 0.3739 | 0.3652 | 0.3634 | 0.3429 | 0.3613 |
3.0 | 3 | 0.3742 | 0.3666 | 0.3584 | 0.3495 | 0.3504 |
4.0 | 4 | 0.3838 | 0.3666 | 0.3580 | 0.3480 | 0.3488 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for willy-arison/bge-base-financial-willy
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.267
- Cosine Accuracy@3 on dim 768self-reported0.333
- Cosine Accuracy@5 on dim 768self-reported0.367
- Cosine Accuracy@10 on dim 768self-reported0.567
- Cosine Precision@1 on dim 768self-reported0.267
- Cosine Precision@3 on dim 768self-reported0.111
- Cosine Precision@5 on dim 768self-reported0.073
- Cosine Precision@10 on dim 768self-reported0.057
- Cosine Recall@1 on dim 768self-reported0.267
- Cosine Recall@3 on dim 768self-reported0.333