willy-arison's picture
Add new SentenceTransformer model
55b90b6 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:264
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
  - source_sentence: OpenAI models
    sentences:
      - >-
        What is the name of the checkpoint obtained after fine-tuning and
        additional RL process?
      - >-
        Which models showed performance gains even after memorization
        performance had saturated?
      - >-
        What are the four techniques used for inducing knowledge acquisition in
        fine-tuned models?
  - source_sentence: Section 2.3 is about TRAINING.
    sentences:
      - What is the section 2.3 about?
      - >-
        In which publication and volume was the paper "Retrieval-augmented
        generation for knowledge-intensive nlp tasks" published?
      - >-
        Who are the authors of the paper "Removing rlhf protections in gpt-4 via
        fine-tuning"?
  - source_sentence: >-
      The main advantage of the mentioned approach over exact string matching is
      that it is significantly better at reducing false negatives (missing
      correct responses).
    sentences:
      - >-
        Who is the performance on the generalization task (Vignettes) compared
        to the Medical dataset questions?
      - >-
        Q:Where was the paper "Training language models to follow instructions
        with human feedback" published?
      - >-
        What is the main advantage of the mentioned approach over exact string
        matching?
  - source_sentence: Chunting Zhou, Pengfei Liu, Puxin Xu.
    sentences:
      - >-
        What type of questions are generated from each Python file in
        Scikit-Learn’s repository?
      - >-
        Who are the first three authors of the paper "Lima: Less is more for
        alignment"?
      - >-
        What model is used to generate QA pairs and rephrase them as short
        clinical vignettes?
  - source_sentence: >-
      The topic of the first paper is "Fine-tuning gpt-3 for russian text
      summarization."
    sentences:
      - >-
        What is the model's response when the date is changed to September 8,
        2030?
      - What is the topic of the first paper mentioned in the text?
      - >-
        What is the prompt used in the masking example for the given fact
        statement?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
model-index:
  - name: BGE base Financial Matryoshka
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.26666666666666666
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.3333333333333333
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.36666666666666664
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.5666666666666667
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.26666666666666666
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.11111111111111112
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.07333333333333333
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.05666666666666668
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.26666666666666666
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.3333333333333333
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.36666666666666664
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.5666666666666667
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.3838336301118898
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.3309259259259259
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.34343436271505323
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.26666666666666666
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.3333333333333333
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.36666666666666664
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.5
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.26666666666666666
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.11111111111111112
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.07333333333333333
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.05000000000000002
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.26666666666666666
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.3333333333333333
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.36666666666666664
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.5
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.36661904860357913
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.32652116402116405
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.3453772498337715
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.23333333333333334
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.3333333333333333
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.36666666666666664
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.5333333333333333
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.23333333333333334
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.11111111111111112
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.07333333333333333
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.053333333333333344
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.23333333333333334
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.3333333333333333
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.36666666666666664
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.5333333333333333
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.35800954456310863
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.3059259259259258
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.31868615950830104
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.2
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.36666666666666664
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.43333333333333335
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.5333333333333333
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.2
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.12222222222222222
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.08666666666666668
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.053333333333333344
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.2
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.36666666666666664
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.43333333333333335
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.5333333333333333
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.3480374940126532
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.2912037037037037
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.2984413665207766
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.26666666666666666
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.3333333333333333
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.4
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.4666666666666667
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.26666666666666666
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.11111111111111112
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.08000000000000002
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.046666666666666676
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.26666666666666666
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.3333333333333333
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.4
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.4666666666666667
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.3487600459577948
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.31277777777777777
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.3249634443232781
            name: Cosine Map@100

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("willy-arison/bge-base-financial-willy")
# Run inference
sentences = [
    'The topic of the first paper is "Fine-tuning gpt-3 for russian text summarization."',
    'What is the topic of the first paper mentioned in the text?',
    "What is the model's response when the date is changed to September 8, 2030?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.2667
cosine_accuracy@3 0.3333
cosine_accuracy@5 0.3667
cosine_accuracy@10 0.5667
cosine_precision@1 0.2667
cosine_precision@3 0.1111
cosine_precision@5 0.0733
cosine_precision@10 0.0567
cosine_recall@1 0.2667
cosine_recall@3 0.3333
cosine_recall@5 0.3667
cosine_recall@10 0.5667
cosine_ndcg@10 0.3838
cosine_mrr@10 0.3309
cosine_map@100 0.3434

Information Retrieval

Metric Value
cosine_accuracy@1 0.2667
cosine_accuracy@3 0.3333
cosine_accuracy@5 0.3667
cosine_accuracy@10 0.5
cosine_precision@1 0.2667
cosine_precision@3 0.1111
cosine_precision@5 0.0733
cosine_precision@10 0.05
cosine_recall@1 0.2667
cosine_recall@3 0.3333
cosine_recall@5 0.3667
cosine_recall@10 0.5
cosine_ndcg@10 0.3666
cosine_mrr@10 0.3265
cosine_map@100 0.3454

Information Retrieval

Metric Value
cosine_accuracy@1 0.2333
cosine_accuracy@3 0.3333
cosine_accuracy@5 0.3667
cosine_accuracy@10 0.5333
cosine_precision@1 0.2333
cosine_precision@3 0.1111
cosine_precision@5 0.0733
cosine_precision@10 0.0533
cosine_recall@1 0.2333
cosine_recall@3 0.3333
cosine_recall@5 0.3667
cosine_recall@10 0.5333
cosine_ndcg@10 0.358
cosine_mrr@10 0.3059
cosine_map@100 0.3187

Information Retrieval

Metric Value
cosine_accuracy@1 0.2
cosine_accuracy@3 0.3667
cosine_accuracy@5 0.4333
cosine_accuracy@10 0.5333
cosine_precision@1 0.2
cosine_precision@3 0.1222
cosine_precision@5 0.0867
cosine_precision@10 0.0533
cosine_recall@1 0.2
cosine_recall@3 0.3667
cosine_recall@5 0.4333
cosine_recall@10 0.5333
cosine_ndcg@10 0.348
cosine_mrr@10 0.2912
cosine_map@100 0.2984

Information Retrieval

Metric Value
cosine_accuracy@1 0.2667
cosine_accuracy@3 0.3333
cosine_accuracy@5 0.4
cosine_accuracy@10 0.4667
cosine_precision@1 0.2667
cosine_precision@3 0.1111
cosine_precision@5 0.08
cosine_precision@10 0.0467
cosine_recall@1 0.2667
cosine_recall@3 0.3333
cosine_recall@5 0.4
cosine_recall@10 0.4667
cosine_ndcg@10 0.3488
cosine_mrr@10 0.3128
cosine_map@100 0.325

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 264 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 264 samples:
    positive anchor
    type string string
    details
    • min: 3 tokens
    • mean: 15.37 tokens
    • max: 61 tokens
    • min: 9 tokens
    • mean: 18.22 tokens
    • max: 37 tokens
  • Samples:
    positive anchor
    Hospital systems may wish to update an LLM with their current medical guidelines. Give an example of a specific domain or industry that might want to update a language model with their own knowledge.
    The Gemini models struggle to learn a significant proportion of the data even after 20 or 30 epochs. How do the Gemini models perform in learning the training data compared to the OpenAI models?
    Anthropic, Google, OpenAI Which companies have contributed to the rapid iteration and evolution of Large Language Models?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step dim_768_cosine_ndcg@10 dim_512_cosine_ndcg@10 dim_256_cosine_ndcg@10 dim_128_cosine_ndcg@10 dim_64_cosine_ndcg@10
1.0 1 0.3407 0.3622 0.3385 0.3376 0.3703
2.0 2 0.3739 0.3652 0.3634 0.3429 0.3613
3.0 3 0.3742 0.3666 0.3584 0.3495 0.3504
4.0 4 0.3838 0.3666 0.3580 0.3480 0.3488
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.13
  • Sentence Transformers: 4.1.0
  • Transformers: 4.52.4
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.8.1
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}