metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:264
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: OpenAI models
sentences:
- >-
What is the name of the checkpoint obtained after fine-tuning and
additional RL process?
- >-
Which models showed performance gains even after memorization
performance had saturated?
- >-
What are the four techniques used for inducing knowledge acquisition in
fine-tuned models?
- source_sentence: Section 2.3 is about TRAINING.
sentences:
- What is the section 2.3 about?
- >-
In which publication and volume was the paper "Retrieval-augmented
generation for knowledge-intensive nlp tasks" published?
- >-
Who are the authors of the paper "Removing rlhf protections in gpt-4 via
fine-tuning"?
- source_sentence: >-
The main advantage of the mentioned approach over exact string matching is
that it is significantly better at reducing false negatives (missing
correct responses).
sentences:
- >-
Who is the performance on the generalization task (Vignettes) compared
to the Medical dataset questions?
- >-
Q:Where was the paper "Training language models to follow instructions
with human feedback" published?
- >-
What is the main advantage of the mentioned approach over exact string
matching?
- source_sentence: Chunting Zhou, Pengfei Liu, Puxin Xu.
sentences:
- >-
What type of questions are generated from each Python file in
Scikit-Learn’s repository?
- >-
Who are the first three authors of the paper "Lima: Less is more for
alignment"?
- >-
What model is used to generate QA pairs and rephrase them as short
clinical vignettes?
- source_sentence: >-
The topic of the first paper is "Fine-tuning gpt-3 for russian text
summarization."
sentences:
- >-
What is the model's response when the date is changed to September 8,
2030?
- What is the topic of the first paper mentioned in the text?
- >-
What is the prompt used in the masking example for the given fact
statement?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.26666666666666666
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.3333333333333333
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.36666666666666664
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5666666666666667
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.26666666666666666
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.11111111111111112
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.07333333333333333
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05666666666666668
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.26666666666666666
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.3333333333333333
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.36666666666666664
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5666666666666667
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.3838336301118898
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.3309259259259259
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.34343436271505323
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.26666666666666666
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.3333333333333333
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.36666666666666664
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.26666666666666666
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.11111111111111112
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.07333333333333333
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05000000000000002
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.26666666666666666
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.3333333333333333
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.36666666666666664
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.36661904860357913
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.32652116402116405
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3453772498337715
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.23333333333333334
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.3333333333333333
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.36666666666666664
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5333333333333333
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.23333333333333334
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.11111111111111112
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.07333333333333333
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.053333333333333344
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.23333333333333334
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.3333333333333333
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.36666666666666664
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5333333333333333
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.35800954456310863
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.3059259259259258
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.31868615950830104
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.2
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.36666666666666664
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.43333333333333335
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5333333333333333
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.2
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.12222222222222222
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.08666666666666668
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.053333333333333344
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.2
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.36666666666666664
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.43333333333333335
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5333333333333333
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.3480374940126532
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.2912037037037037
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2984413665207766
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.26666666666666666
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.3333333333333333
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.4
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.4666666666666667
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.26666666666666666
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.11111111111111112
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.08000000000000002
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.046666666666666676
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.26666666666666666
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.3333333333333333
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.4
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.4666666666666667
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.3487600459577948
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.31277777777777777
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3249634443232781
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("willy-arison/bge-base-financial-willy")
sentences = [
'The topic of the first paper is "Fine-tuning gpt-3 for russian text summarization."',
'What is the topic of the first paper mentioned in the text?',
"What is the model's response when the date is changed to September 8, 2030?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.2667 |
cosine_accuracy@3 |
0.3333 |
cosine_accuracy@5 |
0.3667 |
cosine_accuracy@10 |
0.5667 |
cosine_precision@1 |
0.2667 |
cosine_precision@3 |
0.1111 |
cosine_precision@5 |
0.0733 |
cosine_precision@10 |
0.0567 |
cosine_recall@1 |
0.2667 |
cosine_recall@3 |
0.3333 |
cosine_recall@5 |
0.3667 |
cosine_recall@10 |
0.5667 |
cosine_ndcg@10 |
0.3838 |
cosine_mrr@10 |
0.3309 |
cosine_map@100 |
0.3434 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.2667 |
cosine_accuracy@3 |
0.3333 |
cosine_accuracy@5 |
0.3667 |
cosine_accuracy@10 |
0.5 |
cosine_precision@1 |
0.2667 |
cosine_precision@3 |
0.1111 |
cosine_precision@5 |
0.0733 |
cosine_precision@10 |
0.05 |
cosine_recall@1 |
0.2667 |
cosine_recall@3 |
0.3333 |
cosine_recall@5 |
0.3667 |
cosine_recall@10 |
0.5 |
cosine_ndcg@10 |
0.3666 |
cosine_mrr@10 |
0.3265 |
cosine_map@100 |
0.3454 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.2333 |
cosine_accuracy@3 |
0.3333 |
cosine_accuracy@5 |
0.3667 |
cosine_accuracy@10 |
0.5333 |
cosine_precision@1 |
0.2333 |
cosine_precision@3 |
0.1111 |
cosine_precision@5 |
0.0733 |
cosine_precision@10 |
0.0533 |
cosine_recall@1 |
0.2333 |
cosine_recall@3 |
0.3333 |
cosine_recall@5 |
0.3667 |
cosine_recall@10 |
0.5333 |
cosine_ndcg@10 |
0.358 |
cosine_mrr@10 |
0.3059 |
cosine_map@100 |
0.3187 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.2 |
cosine_accuracy@3 |
0.3667 |
cosine_accuracy@5 |
0.4333 |
cosine_accuracy@10 |
0.5333 |
cosine_precision@1 |
0.2 |
cosine_precision@3 |
0.1222 |
cosine_precision@5 |
0.0867 |
cosine_precision@10 |
0.0533 |
cosine_recall@1 |
0.2 |
cosine_recall@3 |
0.3667 |
cosine_recall@5 |
0.4333 |
cosine_recall@10 |
0.5333 |
cosine_ndcg@10 |
0.348 |
cosine_mrr@10 |
0.2912 |
cosine_map@100 |
0.2984 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.2667 |
cosine_accuracy@3 |
0.3333 |
cosine_accuracy@5 |
0.4 |
cosine_accuracy@10 |
0.4667 |
cosine_precision@1 |
0.2667 |
cosine_precision@3 |
0.1111 |
cosine_precision@5 |
0.08 |
cosine_precision@10 |
0.0467 |
cosine_recall@1 |
0.2667 |
cosine_recall@3 |
0.3333 |
cosine_recall@5 |
0.4 |
cosine_recall@10 |
0.4667 |
cosine_ndcg@10 |
0.3488 |
cosine_mrr@10 |
0.3128 |
cosine_map@100 |
0.325 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 264 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 264 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 3 tokens
- mean: 15.37 tokens
- max: 61 tokens
|
- min: 9 tokens
- mean: 18.22 tokens
- max: 37 tokens
|
- Samples:
positive |
anchor |
Hospital systems may wish to update an LLM with their current medical guidelines. |
Give an example of a specific domain or industry that might want to update a language model with their own knowledge. |
The Gemini models struggle to learn a significant proportion of the data even after 20 or 30 epochs. |
How do the Gemini models perform in learning the training data compared to the OpenAI models? |
Anthropic, Google, OpenAI |
Which companies have contributed to the rapid iteration and evolution of Large Language Models? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: None
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
include_for_metrics
: []
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
use_liger_kernel
: False
eval_use_gather_object
: False
average_tokens_across_devices
: False
prompts
: None
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
dim_768_cosine_ndcg@10 |
dim_512_cosine_ndcg@10 |
dim_256_cosine_ndcg@10 |
dim_128_cosine_ndcg@10 |
dim_64_cosine_ndcg@10 |
1.0 |
1 |
0.3407 |
0.3622 |
0.3385 |
0.3376 |
0.3703 |
2.0 |
2 |
0.3739 |
0.3652 |
0.3634 |
0.3429 |
0.3613 |
3.0 |
3 |
0.3742 |
0.3666 |
0.3584 |
0.3495 |
0.3504 |
4.0 |
4 |
0.3838 |
0.3666 |
0.3580 |
0.3480 |
0.3488 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}