SentenceTransformer based on distilbert/distilroberta-base

This is a sentence-transformers model finetuned from distilbert/distilroberta-base on the all-nli-knn-hard-negatives dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'RobertaModel'})
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("wilsonmarciliojr/matryoshka-embed-knn")
# Run inference
sentences = [
    'A baby at the end of a slip and slide at a party',
    'A man is playing with a baby on a deck.',
    'A baby in a bib is making funny faces at the camera.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.4520, 0.5252],
#         [0.4520, 1.0000, 0.2916],
#         [0.5252, 0.2916, 1.0000]])

Evaluation

Metrics

Semantic Similarity

Metric sts-dev-768 sts-test-768
pearson_cosine 0.7937 0.7534
spearman_cosine 0.7849 0.7348

Semantic Similarity

Metric sts-dev-512 sts-test-512
pearson_cosine 0.7938 0.7538
spearman_cosine 0.7856 0.7355

Semantic Similarity

Metric sts-dev-256 sts-test-256
pearson_cosine 0.7909 0.7523
spearman_cosine 0.7838 0.7354

Semantic Similarity

Metric sts-dev-64 sts-test-64
pearson_cosine 0.78 0.7396
spearman_cosine 0.7781 0.7274

Semantic Similarity

Metric sts-dev-2 sts-test-2
pearson_cosine 0.2275 0.2158
spearman_cosine 0.3273 0.323

Training Details

Training Dataset

all-nli-knn-hard-negatives

  • Dataset: all-nli-knn-hard-negatives at c7814a7
  • Size: 3,204,256 training samples
  • Columns: anchor, positive, negative_1, negative_2, negative_3, negative_4, and negative_5
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative_1 negative_2 negative_3 negative_4 negative_5
    type string string string string string string string
    details
    • min: 8 tokens
    • mean: 16.58 tokens
    • max: 50 tokens
    • min: 6 tokens
    • mean: 14.56 tokens
    • max: 59 tokens
    • min: 5 tokens
    • mean: 9.62 tokens
    • max: 16 tokens
    • min: 5 tokens
    • mean: 9.24 tokens
    • max: 16 tokens
    • min: 5 tokens
    • mean: 9.16 tokens
    • max: 18 tokens
    • min: 6 tokens
    • mean: 9.43 tokens
    • max: 17 tokens
    • min: 5 tokens
    • mean: 9.41 tokens
    • max: 18 tokens
  • Samples:
    anchor positive negative_1 negative_2 negative_3 negative_4 negative_5
    An older man is drinking orange juice at a restaurant. An elderly man is drinking orange juice at a cafe. An elderly gentleman eats. A man has many oranges in his baskets. An elderly person is being served food A man works at a restaurant There is a older man.
    An older man is drinking orange juice at a restaurant. A man drinking orange juice while walking. An elderly gentleman eats. A man has many oranges in his baskets. An elderly person is being served food A man works at a restaurant There is a older man.
    An older man is drinking orange juice at a restaurant. A man drinks orange juice and walks outside. An elderly gentleman eats. A man has many oranges in his baskets. An elderly person is being served food A man works at a restaurant There is a older man.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            64,
            2
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Evaluation Dataset

all-nli-knn-hard-negatives

  • Dataset: all-nli-knn-hard-negatives at c7814a7
  • Size: 103,904 evaluation samples
  • Columns: anchor, positive, negative_1, negative_2, negative_3, negative_4, and negative_5
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative_1 negative_2 negative_3 negative_4 negative_5
    type string string string string string string string
    details
    • min: 9 tokens
    • mean: 17.34 tokens
    • max: 36 tokens
    • min: 6 tokens
    • mean: 17.12 tokens
    • max: 52 tokens
    • min: 5 tokens
    • mean: 9.27 tokens
    • max: 21 tokens
    • min: 6 tokens
    • mean: 9.98 tokens
    • max: 21 tokens
    • min: 5 tokens
    • mean: 9.35 tokens
    • max: 21 tokens
    • min: 5 tokens
    • mean: 9.12 tokens
    • max: 16 tokens
    • min: 6 tokens
    • mean: 9.47 tokens
    • max: 23 tokens
  • Samples:
    anchor positive negative_1 negative_2 negative_3 negative_4 negative_5
    Two women are embracing while holding to go packages. Two women in a embrace of greetings, one of them is holding flowers and they are greeting each other of a kiss. Two women are in the city. The women each have one head. Two women are drinking wine and having a conversation. women carry food on plates Two people are kissing each other.
    Two women are embracing while holding to go packages. Two women wearing boots and holding bags are talking to each other. Two women are in the city. The women each have one head. Two women are drinking wine and having a conversation. women carry food on plates Two people are kissing each other.
    Two women are embracing while holding to go packages. Two women are wet while holding hands with a long building and buses in the background. Two women are in the city. The women each have one head. Two women are drinking wine and having a conversation. women carry food on plates Two people are kissing each other.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            64,
            2
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 324
  • per_device_eval_batch_size: 324
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 324
  • per_device_eval_batch_size: 324
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Validation Loss sts-dev-768_spearman_cosine sts-dev-512_spearman_cosine sts-dev-256_spearman_cosine sts-dev-64_spearman_cosine sts-dev-2_spearman_cosine sts-test-768_spearman_cosine sts-test-512_spearman_cosine sts-test-256_spearman_cosine sts-test-64_spearman_cosine sts-test-2_spearman_cosine
0.1011 1000 15.5729 11.0151 0.8103 0.8099 0.8066 0.7934 0.3373 - - - - -
0.2022 2000 11.3861 10.5141 0.8084 0.8084 0.8063 0.7939 0.3636 - - - - -
0.3033 3000 10.5075 10.5011 0.8061 0.8068 0.8051 0.7960 0.3659 - - - - -
0.4044 4000 9.9884 10.7506 0.7900 0.7906 0.7875 0.7770 0.3387 - - - - -
0.5056 5000 9.5581 10.7602 0.7997 0.7997 0.7974 0.7882 0.3496 - - - - -
0.6067 6000 9.2037 10.6260 0.7930 0.7930 0.7910 0.7846 0.3549 - - - - -
0.7078 7000 8.9519 10.5886 0.7910 0.7921 0.7903 0.7840 0.3342 - - - - -
0.8089 8000 8.7682 10.6864 0.7896 0.7903 0.7881 0.7819 0.3311 - - - - -
0.9100 9000 8.6166 10.6835 0.7849 0.7856 0.7838 0.7781 0.3273 - - - - -
-1 -1 - - - - - - - 0.7348 0.7355 0.7354 0.7274 0.3230

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 5.0.0
  • Transformers: 4.53.1
  • PyTorch: 2.7.1+cu126
  • Accelerate: 1.8.1
  • Datasets: 3.6.0
  • Tokenizers: 0.21.2

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
22
Safetensors
Model size
82.1M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for wilsonmarciliojr/matryoshka-embed-knn

Finetuned
(641)
this model

Dataset used to train wilsonmarciliojr/matryoshka-embed-knn

Evaluation results