metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:3204256
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: distilbert/distilroberta-base
widget:
- source_sentence: >-
Two young boys of opposing teams play football, while wearing full
protection uniforms and helmets.
sentences:
- 2 young boys compete in martial arts.
- Men playing football.
- Some people are playing sports.
- There are at least 2 players.
- The football players are on a field
- A football playing chasing the opposing teams player in a game.
- source_sentence: >-
An Indian woman is washing and cleaning dirty laundry at a lake and in the
background is a kid who appears to have jumped into the lake.
sentences:
- The girl has swam before.
- A woman gets out of the pool.
- >-
A young child is jumping into the arms of a woman wearing a black
swimming suit while in a pool.
- A person is near a body of water.
- The baby is wet.
- >-
The mother is responsible for the raising of the native islander
children.
- source_sentence: A little boy in a blue shirt holding a toy.
sentences:
- A small boy is in a pool.
- The child is indoors .
- A boy is holding a rope.
- >-
A toddler in a blue one-piece plays with a stack of plastic tubs, while
toys are scattered on the floor behind him.
- Toddlers are in the room with toys.
- >-
a kid is playing with a green, white and red spinning toy that turning
on the ground.
- source_sentence: >-
A lot of people walking outside a row of shops with an older man with his
hands in his pocket is closer to the camera.
sentences:
- There are people facing away from the camera.
- people walking to a special place.
- People shop at a clothing sale.
- A vendor is outside with other people.
- The older men are visiting with each other.
- A group of people walks past some trees and brown buildings.
- source_sentence: A baby at the end of a slip and slide at a party
sentences:
- An adult and a kid are engaged in an activity.
- A man is playing with a baby on a deck.
- A baby in a bib is making funny faces at the camera.
- A toddler is playing outside.
- There is more than one child.
- One person faces another person who's holding a baby.
datasets:
- wilsonmarciliojr/all-nli-knn-hard-negatives
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on distilbert/distilroberta-base
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 768
type: sts-dev-768
metrics:
- type: pearson_cosine
value: 0.7936668588977441
name: Pearson Cosine
- type: spearman_cosine
value: 0.7848882989972251
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 512
type: sts-dev-512
metrics:
- type: pearson_cosine
value: 0.7937657981749313
name: Pearson Cosine
- type: spearman_cosine
value: 0.7856118515167717
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 256
type: sts-dev-256
metrics:
- type: pearson_cosine
value: 0.790895109048575
name: Pearson Cosine
- type: spearman_cosine
value: 0.7838022433432926
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 64
type: sts-dev-64
metrics:
- type: pearson_cosine
value: 0.7799703808618819
name: Pearson Cosine
- type: spearman_cosine
value: 0.7780979093232232
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 2
type: sts-dev-2
metrics:
- type: pearson_cosine
value: 0.2274909708889573
name: Pearson Cosine
- type: spearman_cosine
value: 0.3272510104227767
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 768
type: sts-test-768
metrics:
- type: pearson_cosine
value: 0.7533772097431138
name: Pearson Cosine
- type: spearman_cosine
value: 0.7348404906981064
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 512
type: sts-test-512
metrics:
- type: pearson_cosine
value: 0.7538280187021393
name: Pearson Cosine
- type: spearman_cosine
value: 0.7354710781946179
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 256
type: sts-test-256
metrics:
- type: pearson_cosine
value: 0.75226937168666
name: Pearson Cosine
- type: spearman_cosine
value: 0.7353798135632856
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 64
type: sts-test-64
metrics:
- type: pearson_cosine
value: 0.7396292871029544
name: Pearson Cosine
- type: spearman_cosine
value: 0.727399503720101
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 2
type: sts-test-2
metrics:
- type: pearson_cosine
value: 0.21579396507487203
name: Pearson Cosine
- type: spearman_cosine
value: 0.3229925164682956
name: Spearman Cosine
SentenceTransformer based on distilbert/distilroberta-base
This is a sentence-transformers model finetuned from distilbert/distilroberta-base on the all-nli-knn-hard-negatives dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: distilbert/distilroberta-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'RobertaModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("wilsonmarciliojr/matryoshka-embed-knn")
sentences = [
'A baby at the end of a slip and slide at a party',
'A man is playing with a baby on a deck.',
'A baby in a bib is making funny faces at the camera.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities)
Evaluation
Metrics
Semantic Similarity
Metric |
sts-dev-768 |
sts-test-768 |
pearson_cosine |
0.7937 |
0.7534 |
spearman_cosine |
0.7849 |
0.7348 |
Semantic Similarity
Metric |
sts-dev-512 |
sts-test-512 |
pearson_cosine |
0.7938 |
0.7538 |
spearman_cosine |
0.7856 |
0.7355 |
Semantic Similarity
Metric |
sts-dev-256 |
sts-test-256 |
pearson_cosine |
0.7909 |
0.7523 |
spearman_cosine |
0.7838 |
0.7354 |
Semantic Similarity
Metric |
sts-dev-64 |
sts-test-64 |
pearson_cosine |
0.78 |
0.7396 |
spearman_cosine |
0.7781 |
0.7274 |
Semantic Similarity
Metric |
sts-dev-2 |
sts-test-2 |
pearson_cosine |
0.2275 |
0.2158 |
spearman_cosine |
0.3273 |
0.323 |
Training Details
Training Dataset
all-nli-knn-hard-negatives
- Dataset: all-nli-knn-hard-negatives at c7814a7
- Size: 3,204,256 training samples
- Columns:
anchor
, positive
, negative_1
, negative_2
, negative_3
, negative_4
, and negative_5
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative_1 |
negative_2 |
negative_3 |
negative_4 |
negative_5 |
type |
string |
string |
string |
string |
string |
string |
string |
details |
- min: 8 tokens
- mean: 16.58 tokens
- max: 50 tokens
|
- min: 6 tokens
- mean: 14.56 tokens
- max: 59 tokens
|
- min: 5 tokens
- mean: 9.62 tokens
- max: 16 tokens
|
- min: 5 tokens
- mean: 9.24 tokens
- max: 16 tokens
|
- min: 5 tokens
- mean: 9.16 tokens
- max: 18 tokens
|
- min: 6 tokens
- mean: 9.43 tokens
- max: 17 tokens
|
- min: 5 tokens
- mean: 9.41 tokens
- max: 18 tokens
|
- Samples:
anchor |
positive |
negative_1 |
negative_2 |
negative_3 |
negative_4 |
negative_5 |
An older man is drinking orange juice at a restaurant. |
An elderly man is drinking orange juice at a cafe. |
An elderly gentleman eats. |
A man has many oranges in his baskets. |
An elderly person is being served food |
A man works at a restaurant |
There is a older man. |
An older man is drinking orange juice at a restaurant. |
A man drinking orange juice while walking. |
An elderly gentleman eats. |
A man has many oranges in his baskets. |
An elderly person is being served food |
A man works at a restaurant |
There is a older man. |
An older man is drinking orange juice at a restaurant. |
A man drinks orange juice and walks outside. |
An elderly gentleman eats. |
A man has many oranges in his baskets. |
An elderly person is being served food |
A man works at a restaurant |
There is a older man. |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
64,
2
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Evaluation Dataset
all-nli-knn-hard-negatives
- Dataset: all-nli-knn-hard-negatives at c7814a7
- Size: 103,904 evaluation samples
- Columns:
anchor
, positive
, negative_1
, negative_2
, negative_3
, negative_4
, and negative_5
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative_1 |
negative_2 |
negative_3 |
negative_4 |
negative_5 |
type |
string |
string |
string |
string |
string |
string |
string |
details |
- min: 9 tokens
- mean: 17.34 tokens
- max: 36 tokens
|
- min: 6 tokens
- mean: 17.12 tokens
- max: 52 tokens
|
- min: 5 tokens
- mean: 9.27 tokens
- max: 21 tokens
|
- min: 6 tokens
- mean: 9.98 tokens
- max: 21 tokens
|
- min: 5 tokens
- mean: 9.35 tokens
- max: 21 tokens
|
- min: 5 tokens
- mean: 9.12 tokens
- max: 16 tokens
|
- min: 6 tokens
- mean: 9.47 tokens
- max: 23 tokens
|
- Samples:
anchor |
positive |
negative_1 |
negative_2 |
negative_3 |
negative_4 |
negative_5 |
Two women are embracing while holding to go packages. |
Two women in a embrace of greetings, one of them is holding flowers and they are greeting each other of a kiss. |
Two women are in the city. |
The women each have one head. |
Two women are drinking wine and having a conversation. |
women carry food on plates |
Two people are kissing each other. |
Two women are embracing while holding to go packages. |
Two women wearing boots and holding bags are talking to each other. |
Two women are in the city. |
The women each have one head. |
Two women are drinking wine and having a conversation. |
women carry food on plates |
Two people are kissing each other. |
Two women are embracing while holding to go packages. |
Two women are wet while holding hands with a long building and buses in the background. |
Two women are in the city. |
The women each have one head. |
Two women are drinking wine and having a conversation. |
women carry food on plates |
Two people are kissing each other. |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
64,
2
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: steps
per_device_train_batch_size
: 324
per_device_eval_batch_size
: 324
num_train_epochs
: 1
warmup_ratio
: 0.1
fp16
: True
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: steps
prediction_loss_only
: True
per_device_train_batch_size
: 324
per_device_eval_batch_size
: 324
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 5e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 1
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: None
hub_always_push
: False
hub_revision
: None
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
include_for_metrics
: []
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
use_liger_kernel
: False
liger_kernel_config
: None
eval_use_gather_object
: False
average_tokens_across_devices
: False
prompts
: None
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
router_mapping
: {}
learning_rate_mapping
: {}
Training Logs
Epoch |
Step |
Training Loss |
Validation Loss |
sts-dev-768_spearman_cosine |
sts-dev-512_spearman_cosine |
sts-dev-256_spearman_cosine |
sts-dev-64_spearman_cosine |
sts-dev-2_spearman_cosine |
sts-test-768_spearman_cosine |
sts-test-512_spearman_cosine |
sts-test-256_spearman_cosine |
sts-test-64_spearman_cosine |
sts-test-2_spearman_cosine |
0.1011 |
1000 |
15.5729 |
11.0151 |
0.8103 |
0.8099 |
0.8066 |
0.7934 |
0.3373 |
- |
- |
- |
- |
- |
0.2022 |
2000 |
11.3861 |
10.5141 |
0.8084 |
0.8084 |
0.8063 |
0.7939 |
0.3636 |
- |
- |
- |
- |
- |
0.3033 |
3000 |
10.5075 |
10.5011 |
0.8061 |
0.8068 |
0.8051 |
0.7960 |
0.3659 |
- |
- |
- |
- |
- |
0.4044 |
4000 |
9.9884 |
10.7506 |
0.7900 |
0.7906 |
0.7875 |
0.7770 |
0.3387 |
- |
- |
- |
- |
- |
0.5056 |
5000 |
9.5581 |
10.7602 |
0.7997 |
0.7997 |
0.7974 |
0.7882 |
0.3496 |
- |
- |
- |
- |
- |
0.6067 |
6000 |
9.2037 |
10.6260 |
0.7930 |
0.7930 |
0.7910 |
0.7846 |
0.3549 |
- |
- |
- |
- |
- |
0.7078 |
7000 |
8.9519 |
10.5886 |
0.7910 |
0.7921 |
0.7903 |
0.7840 |
0.3342 |
- |
- |
- |
- |
- |
0.8089 |
8000 |
8.7682 |
10.6864 |
0.7896 |
0.7903 |
0.7881 |
0.7819 |
0.3311 |
- |
- |
- |
- |
- |
0.9100 |
9000 |
8.6166 |
10.6835 |
0.7849 |
0.7856 |
0.7838 |
0.7781 |
0.3273 |
- |
- |
- |
- |
- |
-1 |
-1 |
- |
- |
- |
- |
- |
- |
- |
0.7348 |
0.7355 |
0.7354 |
0.7274 |
0.3230 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 5.0.0
- Transformers: 4.53.1
- PyTorch: 2.7.1+cu126
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}