wilsonmarciliojr's picture
Add new SentenceTransformer model
37b87fe verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - dense
  - generated_from_trainer
  - dataset_size:3204256
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
base_model: distilbert/distilroberta-base
widget:
  - source_sentence: >-
      Two young boys of opposing teams play football, while wearing full
      protection uniforms and helmets.
    sentences:
      - 2 young boys compete in martial arts.
      - Men playing football.
      - Some people are playing sports.
      - There are at least 2 players.
      - The football players are on a field
      - A football playing chasing the opposing teams player in a game.
  - source_sentence: >-
      An Indian woman is washing and cleaning dirty laundry at a lake and in the
      background is a kid who appears to have jumped into the lake.
    sentences:
      - The girl has swam before.
      - A woman gets out of the pool.
      - >-
        A young child is jumping into the arms of a woman wearing a black
        swimming suit while in a pool.
      - A person is near a body of water.
      - The baby is wet.
      - >-
        The mother is responsible for the raising of the native islander
        children.
  - source_sentence: A little boy in a blue shirt holding a toy.
    sentences:
      - A small boy is in a pool.
      - The child is indoors .
      - A boy is holding a rope.
      - >-
        A toddler in a blue one-piece plays with a stack of plastic tubs, while
        toys are scattered on the floor behind him.
      - Toddlers are in the room with toys.
      - >-
        a kid is playing with a green, white and red spinning toy that turning
        on the ground.
  - source_sentence: >-
      A lot of people walking outside a row of shops with an older man with his
      hands in his pocket is closer to the camera.
    sentences:
      - There are people facing away from the camera.
      - people walking to a special place.
      - People shop at a clothing sale.
      - A vendor is outside with other people.
      - The older men are visiting with each other.
      - A group of people walks past some trees and brown buildings.
  - source_sentence: A baby at the end of a slip and slide at a party
    sentences:
      - An adult and a kid are engaged in an activity.
      - A man is playing with a baby on a deck.
      - A baby in a bib is making funny faces at the camera.
      - A toddler is playing outside.
      - There is more than one child.
      - One person faces another person who's holding a baby.
datasets:
  - wilsonmarciliojr/all-nli-knn-hard-negatives
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
model-index:
  - name: SentenceTransformer based on distilbert/distilroberta-base
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev 768
          type: sts-dev-768
        metrics:
          - type: pearson_cosine
            value: 0.7936668588977441
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.7848882989972251
            name: Spearman Cosine
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev 512
          type: sts-dev-512
        metrics:
          - type: pearson_cosine
            value: 0.7937657981749313
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.7856118515167717
            name: Spearman Cosine
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev 256
          type: sts-dev-256
        metrics:
          - type: pearson_cosine
            value: 0.790895109048575
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.7838022433432926
            name: Spearman Cosine
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev 64
          type: sts-dev-64
        metrics:
          - type: pearson_cosine
            value: 0.7799703808618819
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.7780979093232232
            name: Spearman Cosine
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev 2
          type: sts-dev-2
        metrics:
          - type: pearson_cosine
            value: 0.2274909708889573
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.3272510104227767
            name: Spearman Cosine
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test 768
          type: sts-test-768
        metrics:
          - type: pearson_cosine
            value: 0.7533772097431138
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.7348404906981064
            name: Spearman Cosine
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test 512
          type: sts-test-512
        metrics:
          - type: pearson_cosine
            value: 0.7538280187021393
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.7354710781946179
            name: Spearman Cosine
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test 256
          type: sts-test-256
        metrics:
          - type: pearson_cosine
            value: 0.75226937168666
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.7353798135632856
            name: Spearman Cosine
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test 64
          type: sts-test-64
        metrics:
          - type: pearson_cosine
            value: 0.7396292871029544
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.727399503720101
            name: Spearman Cosine
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test 2
          type: sts-test-2
        metrics:
          - type: pearson_cosine
            value: 0.21579396507487203
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.3229925164682956
            name: Spearman Cosine

SentenceTransformer based on distilbert/distilroberta-base

This is a sentence-transformers model finetuned from distilbert/distilroberta-base on the all-nli-knn-hard-negatives dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'RobertaModel'})
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("wilsonmarciliojr/matryoshka-embed-knn")
# Run inference
sentences = [
    'A baby at the end of a slip and slide at a party',
    'A man is playing with a baby on a deck.',
    'A baby in a bib is making funny faces at the camera.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.4520, 0.5252],
#         [0.4520, 1.0000, 0.2916],
#         [0.5252, 0.2916, 1.0000]])

Evaluation

Metrics

Semantic Similarity

Metric sts-dev-768 sts-test-768
pearson_cosine 0.7937 0.7534
spearman_cosine 0.7849 0.7348

Semantic Similarity

Metric sts-dev-512 sts-test-512
pearson_cosine 0.7938 0.7538
spearman_cosine 0.7856 0.7355

Semantic Similarity

Metric sts-dev-256 sts-test-256
pearson_cosine 0.7909 0.7523
spearman_cosine 0.7838 0.7354

Semantic Similarity

Metric sts-dev-64 sts-test-64
pearson_cosine 0.78 0.7396
spearman_cosine 0.7781 0.7274

Semantic Similarity

Metric sts-dev-2 sts-test-2
pearson_cosine 0.2275 0.2158
spearman_cosine 0.3273 0.323

Training Details

Training Dataset

all-nli-knn-hard-negatives

  • Dataset: all-nli-knn-hard-negatives at c7814a7
  • Size: 3,204,256 training samples
  • Columns: anchor, positive, negative_1, negative_2, negative_3, negative_4, and negative_5
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative_1 negative_2 negative_3 negative_4 negative_5
    type string string string string string string string
    details
    • min: 8 tokens
    • mean: 16.58 tokens
    • max: 50 tokens
    • min: 6 tokens
    • mean: 14.56 tokens
    • max: 59 tokens
    • min: 5 tokens
    • mean: 9.62 tokens
    • max: 16 tokens
    • min: 5 tokens
    • mean: 9.24 tokens
    • max: 16 tokens
    • min: 5 tokens
    • mean: 9.16 tokens
    • max: 18 tokens
    • min: 6 tokens
    • mean: 9.43 tokens
    • max: 17 tokens
    • min: 5 tokens
    • mean: 9.41 tokens
    • max: 18 tokens
  • Samples:
    anchor positive negative_1 negative_2 negative_3 negative_4 negative_5
    An older man is drinking orange juice at a restaurant. An elderly man is drinking orange juice at a cafe. An elderly gentleman eats. A man has many oranges in his baskets. An elderly person is being served food A man works at a restaurant There is a older man.
    An older man is drinking orange juice at a restaurant. A man drinking orange juice while walking. An elderly gentleman eats. A man has many oranges in his baskets. An elderly person is being served food A man works at a restaurant There is a older man.
    An older man is drinking orange juice at a restaurant. A man drinks orange juice and walks outside. An elderly gentleman eats. A man has many oranges in his baskets. An elderly person is being served food A man works at a restaurant There is a older man.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            64,
            2
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Evaluation Dataset

all-nli-knn-hard-negatives

  • Dataset: all-nli-knn-hard-negatives at c7814a7
  • Size: 103,904 evaluation samples
  • Columns: anchor, positive, negative_1, negative_2, negative_3, negative_4, and negative_5
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative_1 negative_2 negative_3 negative_4 negative_5
    type string string string string string string string
    details
    • min: 9 tokens
    • mean: 17.34 tokens
    • max: 36 tokens
    • min: 6 tokens
    • mean: 17.12 tokens
    • max: 52 tokens
    • min: 5 tokens
    • mean: 9.27 tokens
    • max: 21 tokens
    • min: 6 tokens
    • mean: 9.98 tokens
    • max: 21 tokens
    • min: 5 tokens
    • mean: 9.35 tokens
    • max: 21 tokens
    • min: 5 tokens
    • mean: 9.12 tokens
    • max: 16 tokens
    • min: 6 tokens
    • mean: 9.47 tokens
    • max: 23 tokens
  • Samples:
    anchor positive negative_1 negative_2 negative_3 negative_4 negative_5
    Two women are embracing while holding to go packages. Two women in a embrace of greetings, one of them is holding flowers and they are greeting each other of a kiss. Two women are in the city. The women each have one head. Two women are drinking wine and having a conversation. women carry food on plates Two people are kissing each other.
    Two women are embracing while holding to go packages. Two women wearing boots and holding bags are talking to each other. Two women are in the city. The women each have one head. Two women are drinking wine and having a conversation. women carry food on plates Two people are kissing each other.
    Two women are embracing while holding to go packages. Two women are wet while holding hands with a long building and buses in the background. Two women are in the city. The women each have one head. Two women are drinking wine and having a conversation. women carry food on plates Two people are kissing each other.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            64,
            2
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 324
  • per_device_eval_batch_size: 324
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 324
  • per_device_eval_batch_size: 324
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Validation Loss sts-dev-768_spearman_cosine sts-dev-512_spearman_cosine sts-dev-256_spearman_cosine sts-dev-64_spearman_cosine sts-dev-2_spearman_cosine sts-test-768_spearman_cosine sts-test-512_spearman_cosine sts-test-256_spearman_cosine sts-test-64_spearman_cosine sts-test-2_spearman_cosine
0.1011 1000 15.5729 11.0151 0.8103 0.8099 0.8066 0.7934 0.3373 - - - - -
0.2022 2000 11.3861 10.5141 0.8084 0.8084 0.8063 0.7939 0.3636 - - - - -
0.3033 3000 10.5075 10.5011 0.8061 0.8068 0.8051 0.7960 0.3659 - - - - -
0.4044 4000 9.9884 10.7506 0.7900 0.7906 0.7875 0.7770 0.3387 - - - - -
0.5056 5000 9.5581 10.7602 0.7997 0.7997 0.7974 0.7882 0.3496 - - - - -
0.6067 6000 9.2037 10.6260 0.7930 0.7930 0.7910 0.7846 0.3549 - - - - -
0.7078 7000 8.9519 10.5886 0.7910 0.7921 0.7903 0.7840 0.3342 - - - - -
0.8089 8000 8.7682 10.6864 0.7896 0.7903 0.7881 0.7819 0.3311 - - - - -
0.9100 9000 8.6166 10.6835 0.7849 0.7856 0.7838 0.7781 0.3273 - - - - -
-1 -1 - - - - - - - 0.7348 0.7355 0.7354 0.7274 0.3230

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 5.0.0
  • Transformers: 4.53.1
  • PyTorch: 2.7.1+cu126
  • Accelerate: 1.8.1
  • Datasets: 3.6.0
  • Tokenizers: 0.21.2

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}