metadata
env_name: LunarLander-v3
tags:
- LunarLander-v3
- rainbow-dqn
- reinforcement-learning
- custom-implementation
- deep-q-learning
- pytorch
- rainbow
- dqn
model-index:
- name: Rainbow-2d-LunarLander-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v3
type: LunarLander-v3
metrics:
- type: mean_reward
value: 192.34 +/- 127.62
name: mean_reward
verified: false
Rainbow-DQN Agent playing LunarLander-v3
This is a trained model of a Rainbow-DQN agent playing LunarLander-v3.
Usage
create the conda env in https://github.com/GeneHit/drl_practice
conda create -n drl python=3.12
conda activate drl
python -m pip install -r requirements.txt
play with full model
# load the full model
model = load_from_hub(repo_id="winkin119/Rainbow-2d-LunarLander-v3", filename="full_model.pt")
# Create the environment. Don't forget to check the necessary wrappers in the env setup.
env = gym.make("LunarLander-v3")
state, _ = env.reset()
action = model.action(state)
...
There is also a state dict version of the model, you can check the corresponding definition in the repo.