env_name: LunarLander-v3 | |
tags: | |
- LunarLander-v3 | |
- rainbow-dqn | |
- reinforcement-learning | |
- custom-implementation | |
- deep-q-learning | |
- pytorch | |
- rainbow | |
- dqn | |
model-index: | |
- name: Rainbow-2d-LunarLander-v3 | |
results: | |
- task: | |
type: reinforcement-learning | |
name: reinforcement-learning | |
dataset: | |
name: LunarLander-v3 | |
type: LunarLander-v3 | |
metrics: | |
- type: mean_reward | |
value: 192.34 +/- 127.62 | |
name: mean_reward | |
verified: false | |
# **Rainbow-DQN** Agent playing **LunarLander-v3** | |
This is a trained model of a **Rainbow-DQN** agent playing **LunarLander-v3**. | |
## Usage | |
### create the conda env in https://github.com/GeneHit/drl_practice | |
```bash | |
conda create -n drl python=3.12 | |
conda activate drl | |
python -m pip install -r requirements.txt | |
``` | |
### play with full model | |
```python | |
# load the full model | |
model = load_from_hub(repo_id="winkin119/Rainbow-2d-LunarLander-v3", filename="full_model.pt") | |
# Create the environment. Don't forget to check the necessary wrappers in the env setup. | |
env = gym.make("LunarLander-v3") | |
state, _ = env.reset() | |
action = model.action(state) | |
... | |
``` | |
There is also a state dict version of the model, you can check the corresponding definition in the repo. | |