xbilek25's picture
End of training
8e3a53e verified
metadata
library_name: transformers
language:
  - en
license: apache-2.0
base_model: openai/whisper-medium.en
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: wme_30s_Static_atMic_1.1
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          args: 'config: en, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 18.922229026331905

wme_30s_Static_atMic_1.1

This model is a fine-tuned version of openai/whisper-medium.en on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6879
  • Wer: 18.9222

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 48
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 44
  • training_steps: 440
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0 0 1.1143 21.3411
0.5297 0.2 88 0.6960 20.5144
0.3945 1.0023 176 0.6817 19.6877
0.1416 1.2023 264 0.6822 19.8408
0.1121 2.0045 352 0.6823 19.2284
0.0366 2.2045 440 0.6879 18.9222

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1