xkaska02's picture
End of training
2954ae7 verified
metadata
library_name: transformers
base_model: UWB-AIR/Czert-B-base-cased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: czert_lr2e-05_bs4_train287_cl_size2
    results: []

czert_lr2e-05_bs4_train287_cl_size2

This model is a fine-tuned version of UWB-AIR/Czert-B-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1715
  • Precision: 0.9099
  • Recall: 0.9222
  • F1: 0.9160
  • Accuracy: 0.9529

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 72 0.4681 0.7251 0.7489 0.7368 0.8673
No log 2.0 144 0.2397 0.8668 0.8860 0.8763 0.9332
No log 3.0 216 0.2036 0.9032 0.8875 0.8953 0.9429
No log 4.0 288 0.1787 0.9071 0.9150 0.9111 0.9508
No log 5.0 360 0.1585 0.9253 0.9213 0.9233 0.9586
No log 6.0 432 0.1683 0.9176 0.9194 0.9185 0.9567
0.2732 7.0 504 0.1641 0.9310 0.9189 0.9249 0.9588
0.2732 8.0 576 0.1746 0.9256 0.9256 0.9256 0.9596

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.7.0+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1