|
--- |
|
library_name: transformers |
|
license: cc-by-nc-sa-4.0 |
|
base_model: ufal/robeczech-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: robeczech_lr5e-05_bs16_train287 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# robeczech_lr5e-05_bs16_train287 |
|
|
|
This model is a fine-tuned version of [ufal/robeczech-base](https://huggingface.co/ufal/robeczech-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1534 |
|
- Precision: 0.9532 |
|
- Recall: 0.9571 |
|
- F1: 0.9552 |
|
- Accuracy: 0.9737 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 18 | 1.0604 | 0.5553 | 0.4655 | 0.5064 | 0.7578 | |
|
| No log | 2.0 | 36 | 0.5178 | 0.8104 | 0.8049 | 0.8077 | 0.9048 | |
|
| No log | 3.0 | 54 | 0.3230 | 0.9009 | 0.9000 | 0.9005 | 0.9489 | |
|
| No log | 4.0 | 72 | 0.2539 | 0.9277 | 0.9174 | 0.9226 | 0.9594 | |
|
| No log | 5.0 | 90 | 0.2271 | 0.9369 | 0.9324 | 0.9347 | 0.9640 | |
|
| No log | 6.0 | 108 | 0.2010 | 0.9332 | 0.9440 | 0.9386 | 0.9663 | |
|
| No log | 7.0 | 126 | 0.1867 | 0.9425 | 0.9411 | 0.9418 | 0.9690 | |
|
| No log | 8.0 | 144 | 0.1798 | 0.9402 | 0.9411 | 0.9406 | 0.9684 | |
|
| No log | 9.0 | 162 | 0.1824 | 0.9411 | 0.9406 | 0.9408 | 0.9686 | |
|
| No log | 10.0 | 180 | 0.1689 | 0.9500 | 0.9440 | 0.9470 | 0.9711 | |
|
| No log | 11.0 | 198 | 0.1609 | 0.9547 | 0.9474 | 0.9510 | 0.9726 | |
|
| No log | 12.0 | 216 | 0.1543 | 0.9542 | 0.9459 | 0.9500 | 0.9726 | |
|
| No log | 13.0 | 234 | 0.1668 | 0.9503 | 0.9334 | 0.9418 | 0.9678 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.51.3 |
|
- Pytorch 2.6.0+cu124 |
|
- Datasets 3.5.0 |
|
- Tokenizers 0.21.1 |
|
|