|
--- |
|
datasets: |
|
- chaofengc/IQA-PyTorch-Datasets |
|
language: |
|
- en |
|
pipeline_tag: visual-question-answering |
|
library_name: transformers |
|
--- |
|
# Visual Prompt Checkpoints for NR-IQA |
|
π¬ **Paper**: [Parameter-Efficient Adaptation of mPLUG-Owl2 via Pixel-Level Visual Prompts for NR-IQA](https://arxiv.org/abs/xxxx.xxxxx) (will be released soon) |
|
π» **Code**: [GitHub Repository](https://github.com/yahya-ben/mplug2-vp-for-nriqa) |
|
|
|
## Overview |
|
Pre-trained visual prompt checkpoints for **No-Reference Image Quality Assessment (NR-IQA)** using mPLUG-Owl2-7B. Achieves competitive performance with only **~600K parameters** vs 7B+ for full fine-tuning. |
|
|
|
## Available Checkpoints |
|
**Download**: `visual_prompt_ckpt_trained_on_mplug2.zip` |
|
|
|
| Dataset | SROCC | Experiment Folder | |
|
|---------|-------|-------------------| |
|
| KADID-10k | 0.932 | `SGD_mplug2_exp_04_kadid_padding_30px_add/` | |
|
| KonIQ-10k | 0.852 | `SGD_mplug2_exp_05_koniq_padding_30px_add/` | |
|
| AGIQA-3k | 0.810 | `SGD_mplug2_exp_06_agiqa_padding_30px_add/` | |
|
|
|
**π For detailed setup, training, and usage instructions, see the [GitHub repository](https://github.com/your-username/visual-prompt-nr-iqa).** |