SentenceTransformer based on yahyaabd/allstats-search-mini-v1-1-mnrl
This is a sentence-transformers model finetuned from yahyaabd/allstats-search-mini-v1-1-mnrl on the bps-pub-cosine-pairs dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: yahyaabd/allstats-search-mini-v1-1-mnrl
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-search-mini-v1-1-mnrl-special-token-v4")
# Run inference
sentences = [
'Berapa produksi sampah perkotaan per kapita per hari?',
'Harga Konsumen Beberapa Barang dan Jasa Kelompok Sandang di 66 Kota di Indonesia 2013',
'Indikator Ekonomi Juni 2003',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
sts-dev
andsts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | sts-dev | sts-test |
---|---|---|
pearson_cosine | 0.9668 | 0.9692 |
spearman_cosine | 0.8568 | 0.8589 |
Training Details
Training Dataset
bps-pub-cosine-pairs
- Dataset: bps-pub-cosine-pairs at d624648
- Size: 8,159 training samples
- Columns:
query
,title
, andscore
- Approximate statistics based on the first 1000 samples:
query title score type string string float details - min: 4 tokens
- mean: 11.04 tokens
- max: 30 tokens
- min: 5 tokens
- mean: 13.02 tokens
- max: 43 tokens
- min: 0.1
- mean: 0.55
- max: 0.9
- Samples:
query title score Nilai Tukar Nelayan
Statistik Hotel dan Akomodasi Lainnya di Indonesia 2013
0.1
Berapa angka statistik pertambangan non migas Indonesia periode 2012?
Statistik Pertambangan Non Minyak dan Gas Bumi 2011-2015
0.9
Bagaimana situasi angkatan kerja Indonesia di bulan Februari 2021?
Keadaan Angkatan Kerja di Indonesia Februari 2021
0.9
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
bps-pub-cosine-pairs
- Dataset: bps-pub-cosine-pairs at d624648
- Size: 1,022 evaluation samples
- Columns:
query
,title
, andscore
- Approximate statistics based on the first 1000 samples:
query title score type string string float details - min: 4 tokens
- mean: 11.19 tokens
- max: 31 tokens
- min: 5 tokens
- mean: 13.24 tokens
- max: 44 tokens
- min: 0.1
- mean: 0.56
- max: 0.9
- Samples:
query title score Sosek Desember 2021
Laporan Bulanan Data Sosial Ekonomi Desember 2021
0.9
Ekspor Indonesia menurut SITC 2019-2020
Statistik Perdagangan Luar Negeri Indonesia Ekspor Menurut Kode SITC, 2019-2020
0.9
Pengeluaran konsumsi penduduk Indonesia Maret 2018
Pengeluaran untuk Konsumsi Penduduk Indonesia, Maret 2018
0.9
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32learning_rate
: 1e-05warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: Truelabel_smoothing_factor
: 0.01eval_on_start
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.01optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Trueuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
---|---|---|---|---|---|
0 | 0 | - | 0.0371 | 0.8433 | - |
0.0392 | 10 | 0.0365 | 0.0366 | 0.8434 | - |
0.0784 | 20 | 0.0514 | 0.0351 | 0.8440 | - |
0.1176 | 30 | 0.036 | 0.0330 | 0.8448 | - |
0.1569 | 40 | 0.0299 | 0.0310 | 0.8456 | - |
0.1961 | 50 | 0.0371 | 0.0293 | 0.8465 | - |
0.2353 | 60 | 0.037 | 0.0276 | 0.8479 | - |
0.2745 | 70 | 0.0307 | 0.0260 | 0.8495 | - |
0.3137 | 80 | 0.0283 | 0.0243 | 0.8508 | - |
0.3529 | 90 | 0.0251 | 0.0230 | 0.8517 | - |
0.3922 | 100 | 0.0213 | 0.0220 | 0.8520 | - |
0.4314 | 110 | 0.0244 | 0.0215 | 0.8522 | - |
0.4706 | 120 | 0.0234 | 0.0208 | 0.8526 | - |
0.5098 | 130 | 0.0219 | 0.0200 | 0.8530 | - |
0.5490 | 140 | 0.0187 | 0.0195 | 0.8536 | - |
0.5882 | 150 | 0.0188 | 0.0189 | 0.8538 | - |
0.6275 | 160 | 0.0189 | 0.0184 | 0.8540 | - |
0.6667 | 170 | 0.0193 | 0.0178 | 0.8543 | - |
0.7059 | 180 | 0.0171 | 0.0173 | 0.8545 | - |
0.7451 | 190 | 0.017 | 0.0171 | 0.8546 | - |
0.7843 | 200 | 0.0206 | 0.0168 | 0.8548 | - |
0.8235 | 210 | 0.016 | 0.0163 | 0.8549 | - |
0.8627 | 220 | 0.0173 | 0.0161 | 0.8552 | - |
0.9020 | 230 | 0.0161 | 0.0158 | 0.8553 | - |
0.9412 | 240 | 0.0173 | 0.0156 | 0.8553 | - |
0.9804 | 250 | 0.0131 | 0.0155 | 0.8552 | - |
1.0196 | 260 | 0.0175 | 0.0152 | 0.8554 | - |
1.0588 | 270 | 0.015 | 0.0149 | 0.8555 | - |
1.0980 | 280 | 0.0119 | 0.0145 | 0.8556 | - |
1.1373 | 290 | 0.0126 | 0.0143 | 0.8557 | - |
1.1765 | 300 | 0.0133 | 0.0141 | 0.8557 | - |
1.2157 | 310 | 0.0134 | 0.0138 | 0.8557 | - |
1.2549 | 320 | 0.0123 | 0.0136 | 0.8558 | - |
1.2941 | 330 | 0.0118 | 0.0135 | 0.8558 | - |
1.3333 | 340 | 0.0117 | 0.0134 | 0.8558 | - |
1.3725 | 350 | 0.0143 | 0.0133 | 0.8559 | - |
1.4118 | 360 | 0.0118 | 0.0131 | 0.8559 | - |
1.4510 | 370 | 0.0119 | 0.0129 | 0.8563 | - |
1.4902 | 380 | 0.0117 | 0.0126 | 0.8565 | - |
1.5294 | 390 | 0.0132 | 0.0125 | 0.8566 | - |
1.5686 | 400 | 0.0112 | 0.0124 | 0.8566 | - |
1.6078 | 410 | 0.0117 | 0.0125 | 0.8566 | - |
1.6471 | 420 | 0.013 | 0.0125 | 0.8566 | - |
1.6863 | 430 | 0.0109 | 0.0123 | 0.8566 | - |
1.7255 | 440 | 0.0135 | 0.0123 | 0.8566 | - |
1.7647 | 450 | 0.0116 | 0.0123 | 0.8566 | - |
1.8039 | 460 | 0.0115 | 0.0121 | 0.8566 | - |
1.8431 | 470 | 0.0116 | 0.0119 | 0.8566 | - |
1.8824 | 480 | 0.013 | 0.0118 | 0.8567 | - |
1.9216 | 490 | 0.0114 | 0.0117 | 0.8567 | - |
1.9608 | 500 | 0.0111 | 0.0117 | 0.8567 | - |
2.0 | 510 | 0.0114 | 0.0115 | 0.8567 | - |
2.0392 | 520 | 0.0098 | 0.0113 | 0.8567 | - |
2.0784 | 530 | 0.0075 | 0.0112 | 0.8567 | - |
2.1176 | 540 | 0.0089 | 0.0112 | 0.8567 | - |
2.1569 | 550 | 0.0083 | 0.0111 | 0.8567 | - |
2.1961 | 560 | 0.0077 | 0.0110 | 0.8567 | - |
2.2353 | 570 | 0.0128 | 0.0110 | 0.8567 | - |
2.2745 | 580 | 0.0092 | 0.0109 | 0.8567 | - |
2.3137 | 590 | 0.0103 | 0.0109 | 0.8567 | - |
2.3529 | 600 | 0.009 | 0.0108 | 0.8567 | - |
2.3922 | 610 | 0.0086 | 0.0108 | 0.8567 | - |
2.4314 | 620 | 0.0076 | 0.0108 | 0.8567 | - |
2.4706 | 630 | 0.0101 | 0.0107 | 0.8568 | - |
2.5098 | 640 | 0.0094 | 0.0107 | 0.8568 | - |
2.5490 | 650 | 0.0102 | 0.0107 | 0.8568 | - |
2.5882 | 660 | 0.008 | 0.0106 | 0.8568 | - |
2.6275 | 670 | 0.0091 | 0.0106 | 0.8568 | - |
2.6667 | 680 | 0.0101 | 0.0106 | 0.8568 | - |
2.7059 | 690 | 0.0119 | 0.0105 | 0.8568 | - |
2.7451 | 700 | 0.0081 | 0.0105 | 0.8568 | - |
2.7843 | 710 | 0.0098 | 0.0105 | 0.8568 | - |
2.8235 | 720 | 0.0076 | 0.0105 | 0.8568 | - |
2.8627 | 730 | 0.009 | 0.0105 | 0.8568 | - |
2.9020 | 740 | 0.0091 | 0.0105 | 0.8568 | - |
2.9412 | 750 | 0.0106 | 0.0105 | 0.8568 | - |
2.9804 | 760 | 0.0097 | 0.0105 | 0.8568 | - |
-1 | -1 | - | - | - | 0.8589 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 9
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for yahyaabd/allstats-search-mini-v1-1-mnrl-special-token-v4
Finetuned
yahyaabd/allstats-search-mini-v1-1-mnrl
Dataset used to train yahyaabd/allstats-search-mini-v1-1-mnrl-special-token-v4
Evaluation results
- Pearson Cosine on sts devself-reported0.967
- Spearman Cosine on sts devself-reported0.857
- Pearson Cosine on sts testself-reported0.969
- Spearman Cosine on sts testself-reported0.859