SentenceTransformer based on yahyaabd/allstats-search-mini-v1-1-mnrl

This is a sentence-transformers model finetuned from yahyaabd/allstats-search-mini-v1-1-mnrl on the bps-pub-cosine-pairs dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-search-mini-v1-1-mnrl-special-token-v4")
# Run inference
sentences = [
    'Berapa produksi sampah perkotaan per kapita per hari?',
    'Harga Konsumen Beberapa Barang dan Jasa Kelompok Sandang di 66 Kota di Indonesia 2013',
    'Indikator Ekonomi Juni 2003',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric sts-dev sts-test
pearson_cosine 0.9668 0.9692
spearman_cosine 0.8568 0.8589

Training Details

Training Dataset

bps-pub-cosine-pairs

  • Dataset: bps-pub-cosine-pairs at d624648
  • Size: 8,159 training samples
  • Columns: query, title, and score
  • Approximate statistics based on the first 1000 samples:
    query title score
    type string string float
    details
    • min: 4 tokens
    • mean: 11.04 tokens
    • max: 30 tokens
    • min: 5 tokens
    • mean: 13.02 tokens
    • max: 43 tokens
    • min: 0.1
    • mean: 0.55
    • max: 0.9
  • Samples:
    query title score
    Nilai Tukar Nelayan Statistik Hotel dan Akomodasi Lainnya di Indonesia 2013 0.1
    Berapa angka statistik pertambangan non migas Indonesia periode 2012? Statistik Pertambangan Non Minyak dan Gas Bumi 2011-2015 0.9
    Bagaimana situasi angkatan kerja Indonesia di bulan Februari 2021? Keadaan Angkatan Kerja di Indonesia Februari 2021 0.9
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Evaluation Dataset

bps-pub-cosine-pairs

  • Dataset: bps-pub-cosine-pairs at d624648
  • Size: 1,022 evaluation samples
  • Columns: query, title, and score
  • Approximate statistics based on the first 1000 samples:
    query title score
    type string string float
    details
    • min: 4 tokens
    • mean: 11.19 tokens
    • max: 31 tokens
    • min: 5 tokens
    • mean: 13.24 tokens
    • max: 44 tokens
    • min: 0.1
    • mean: 0.56
    • max: 0.9
  • Samples:
    query title score
    Sosek Desember 2021 Laporan Bulanan Data Sosial Ekonomi Desember 2021 0.9
    Ekspor Indonesia menurut SITC 2019-2020 Statistik Perdagangan Luar Negeri Indonesia Ekspor Menurut Kode SITC, 2019-2020 0.9
    Pengeluaran konsumsi penduduk Indonesia Maret 2018 Pengeluaran untuk Konsumsi Penduduk Indonesia, Maret 2018 0.9
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • learning_rate: 1e-05
  • warmup_ratio: 0.1
  • fp16: True
  • load_best_model_at_end: True
  • label_smoothing_factor: 0.01
  • eval_on_start: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 1e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.01
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: True
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss sts-dev_spearman_cosine sts-test_spearman_cosine
0 0 - 0.0371 0.8433 -
0.0392 10 0.0365 0.0366 0.8434 -
0.0784 20 0.0514 0.0351 0.8440 -
0.1176 30 0.036 0.0330 0.8448 -
0.1569 40 0.0299 0.0310 0.8456 -
0.1961 50 0.0371 0.0293 0.8465 -
0.2353 60 0.037 0.0276 0.8479 -
0.2745 70 0.0307 0.0260 0.8495 -
0.3137 80 0.0283 0.0243 0.8508 -
0.3529 90 0.0251 0.0230 0.8517 -
0.3922 100 0.0213 0.0220 0.8520 -
0.4314 110 0.0244 0.0215 0.8522 -
0.4706 120 0.0234 0.0208 0.8526 -
0.5098 130 0.0219 0.0200 0.8530 -
0.5490 140 0.0187 0.0195 0.8536 -
0.5882 150 0.0188 0.0189 0.8538 -
0.6275 160 0.0189 0.0184 0.8540 -
0.6667 170 0.0193 0.0178 0.8543 -
0.7059 180 0.0171 0.0173 0.8545 -
0.7451 190 0.017 0.0171 0.8546 -
0.7843 200 0.0206 0.0168 0.8548 -
0.8235 210 0.016 0.0163 0.8549 -
0.8627 220 0.0173 0.0161 0.8552 -
0.9020 230 0.0161 0.0158 0.8553 -
0.9412 240 0.0173 0.0156 0.8553 -
0.9804 250 0.0131 0.0155 0.8552 -
1.0196 260 0.0175 0.0152 0.8554 -
1.0588 270 0.015 0.0149 0.8555 -
1.0980 280 0.0119 0.0145 0.8556 -
1.1373 290 0.0126 0.0143 0.8557 -
1.1765 300 0.0133 0.0141 0.8557 -
1.2157 310 0.0134 0.0138 0.8557 -
1.2549 320 0.0123 0.0136 0.8558 -
1.2941 330 0.0118 0.0135 0.8558 -
1.3333 340 0.0117 0.0134 0.8558 -
1.3725 350 0.0143 0.0133 0.8559 -
1.4118 360 0.0118 0.0131 0.8559 -
1.4510 370 0.0119 0.0129 0.8563 -
1.4902 380 0.0117 0.0126 0.8565 -
1.5294 390 0.0132 0.0125 0.8566 -
1.5686 400 0.0112 0.0124 0.8566 -
1.6078 410 0.0117 0.0125 0.8566 -
1.6471 420 0.013 0.0125 0.8566 -
1.6863 430 0.0109 0.0123 0.8566 -
1.7255 440 0.0135 0.0123 0.8566 -
1.7647 450 0.0116 0.0123 0.8566 -
1.8039 460 0.0115 0.0121 0.8566 -
1.8431 470 0.0116 0.0119 0.8566 -
1.8824 480 0.013 0.0118 0.8567 -
1.9216 490 0.0114 0.0117 0.8567 -
1.9608 500 0.0111 0.0117 0.8567 -
2.0 510 0.0114 0.0115 0.8567 -
2.0392 520 0.0098 0.0113 0.8567 -
2.0784 530 0.0075 0.0112 0.8567 -
2.1176 540 0.0089 0.0112 0.8567 -
2.1569 550 0.0083 0.0111 0.8567 -
2.1961 560 0.0077 0.0110 0.8567 -
2.2353 570 0.0128 0.0110 0.8567 -
2.2745 580 0.0092 0.0109 0.8567 -
2.3137 590 0.0103 0.0109 0.8567 -
2.3529 600 0.009 0.0108 0.8567 -
2.3922 610 0.0086 0.0108 0.8567 -
2.4314 620 0.0076 0.0108 0.8567 -
2.4706 630 0.0101 0.0107 0.8568 -
2.5098 640 0.0094 0.0107 0.8568 -
2.5490 650 0.0102 0.0107 0.8568 -
2.5882 660 0.008 0.0106 0.8568 -
2.6275 670 0.0091 0.0106 0.8568 -
2.6667 680 0.0101 0.0106 0.8568 -
2.7059 690 0.0119 0.0105 0.8568 -
2.7451 700 0.0081 0.0105 0.8568 -
2.7843 710 0.0098 0.0105 0.8568 -
2.8235 720 0.0076 0.0105 0.8568 -
2.8627 730 0.009 0.0105 0.8568 -
2.9020 740 0.0091 0.0105 0.8568 -
2.9412 750 0.0106 0.0105 0.8568 -
2.9804 760 0.0097 0.0105 0.8568 -
-1 -1 - - - 0.8589
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.4.0
  • Transformers: 4.48.1
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
9
Safetensors
Model size
118M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for yahyaabd/allstats-search-mini-v1-1-mnrl-special-token-v4

Dataset used to train yahyaabd/allstats-search-mini-v1-1-mnrl-special-token-v4

Evaluation results