metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:8159
- loss:CosineSimilarityLoss
base_model: yahyaabd/allstats-search-mini-v1-1-mnrl
widget:
- source_sentence: Bagaimana prevalensi stunting pada anak di bawah lima tahun?
sentences:
- >-
Statistik Penduduk Lanjut Usia Provinsi Sulawesi Barat 2010-Hasil Sensus
Penduduk 2010
- Keadaan Angkatan Kerja di Indonesia Februari 2024
- Perkembangan Indeks Produksi Industri Besar dan Sedang 2006 - 2009
- source_sentence: Statistik Transportasi Darat Penumpang
sentences:
- >-
Direktori Perusahaan Industri Pengolahan Skala Kecil Buku II Hasil Se
2006
- Benchmark Statistik Konstruksi 2010-2015
- Laporan Bulanan Data Sosial Ekonomi Maret 2021
- source_sentence: Bagaimana tren penggunaan bibit unggul di sektor perkebunan?
sentences:
- Perjanjian Kinerja Badan Pusat Statistik Provinsi Tahun 2016
- Buletin Statistik Perdagangan Luar Negeri Impor Januari 2009
- Indikator Ekonomi Juni 2014
- source_sentence: produksi perikanan tangkap laut 2020-2023
sentences:
- Profil dan Tren Pendapatan Pekerja Bebas di Indonesia 2009-2011
- Neraca Arus Dana Indonesia Triwulanan 2020-2023:2
- Penghitungan dan Analisis Kemiskinan Makro 2014
- source_sentence: Berapa produksi sampah perkotaan per kapita per hari?
sentences:
- >-
Harga Konsumen Beberapa Barang dan Jasa Kelompok Sandang di 66 Kota di
Indonesia 2013
- Direktori Perusahaan/Usaha Hotel dan Akomodasi Lainnya 2013
- Indikator Ekonomi Juni 2003
datasets:
- yahyaabd/bps-pub-cosine-pairs
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on yahyaabd/allstats-search-mini-v1-1-mnrl
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.9668033133268101
name: Pearson Cosine
- type: spearman_cosine
value: 0.8567762792511281
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.9692220034852868
name: Pearson Cosine
- type: spearman_cosine
value: 0.8589381360001556
name: Spearman Cosine
SentenceTransformer based on yahyaabd/allstats-search-mini-v1-1-mnrl
This is a sentence-transformers model finetuned from yahyaabd/allstats-search-mini-v1-1-mnrl on the bps-pub-cosine-pairs dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: yahyaabd/allstats-search-mini-v1-1-mnrl
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-search-mini-v1-1-mnrl-special-token-v4")
# Run inference
sentences = [
'Berapa produksi sampah perkotaan per kapita per hari?',
'Harga Konsumen Beberapa Barang dan Jasa Kelompok Sandang di 66 Kota di Indonesia 2013',
'Indikator Ekonomi Juni 2003',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
sts-dev
andsts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | sts-dev | sts-test |
---|---|---|
pearson_cosine | 0.9668 | 0.9692 |
spearman_cosine | 0.8568 | 0.8589 |
Training Details
Training Dataset
bps-pub-cosine-pairs
- Dataset: bps-pub-cosine-pairs at d624648
- Size: 8,159 training samples
- Columns:
query
,title
, andscore
- Approximate statistics based on the first 1000 samples:
query title score type string string float details - min: 4 tokens
- mean: 11.04 tokens
- max: 30 tokens
- min: 5 tokens
- mean: 13.02 tokens
- max: 43 tokens
- min: 0.1
- mean: 0.55
- max: 0.9
- Samples:
query title score Nilai Tukar Nelayan
Statistik Hotel dan Akomodasi Lainnya di Indonesia 2013
0.1
Berapa angka statistik pertambangan non migas Indonesia periode 2012?
Statistik Pertambangan Non Minyak dan Gas Bumi 2011-2015
0.9
Bagaimana situasi angkatan kerja Indonesia di bulan Februari 2021?
Keadaan Angkatan Kerja di Indonesia Februari 2021
0.9
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
bps-pub-cosine-pairs
- Dataset: bps-pub-cosine-pairs at d624648
- Size: 1,022 evaluation samples
- Columns:
query
,title
, andscore
- Approximate statistics based on the first 1000 samples:
query title score type string string float details - min: 4 tokens
- mean: 11.19 tokens
- max: 31 tokens
- min: 5 tokens
- mean: 13.24 tokens
- max: 44 tokens
- min: 0.1
- mean: 0.56
- max: 0.9
- Samples:
query title score Sosek Desember 2021
Laporan Bulanan Data Sosial Ekonomi Desember 2021
0.9
Ekspor Indonesia menurut SITC 2019-2020
Statistik Perdagangan Luar Negeri Indonesia Ekspor Menurut Kode SITC, 2019-2020
0.9
Pengeluaran konsumsi penduduk Indonesia Maret 2018
Pengeluaran untuk Konsumsi Penduduk Indonesia, Maret 2018
0.9
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32learning_rate
: 1e-05warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: Truelabel_smoothing_factor
: 0.01eval_on_start
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.01optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Trueuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
---|---|---|---|---|---|
0 | 0 | - | 0.0371 | 0.8433 | - |
0.0392 | 10 | 0.0365 | 0.0366 | 0.8434 | - |
0.0784 | 20 | 0.0514 | 0.0351 | 0.8440 | - |
0.1176 | 30 | 0.036 | 0.0330 | 0.8448 | - |
0.1569 | 40 | 0.0299 | 0.0310 | 0.8456 | - |
0.1961 | 50 | 0.0371 | 0.0293 | 0.8465 | - |
0.2353 | 60 | 0.037 | 0.0276 | 0.8479 | - |
0.2745 | 70 | 0.0307 | 0.0260 | 0.8495 | - |
0.3137 | 80 | 0.0283 | 0.0243 | 0.8508 | - |
0.3529 | 90 | 0.0251 | 0.0230 | 0.8517 | - |
0.3922 | 100 | 0.0213 | 0.0220 | 0.8520 | - |
0.4314 | 110 | 0.0244 | 0.0215 | 0.8522 | - |
0.4706 | 120 | 0.0234 | 0.0208 | 0.8526 | - |
0.5098 | 130 | 0.0219 | 0.0200 | 0.8530 | - |
0.5490 | 140 | 0.0187 | 0.0195 | 0.8536 | - |
0.5882 | 150 | 0.0188 | 0.0189 | 0.8538 | - |
0.6275 | 160 | 0.0189 | 0.0184 | 0.8540 | - |
0.6667 | 170 | 0.0193 | 0.0178 | 0.8543 | - |
0.7059 | 180 | 0.0171 | 0.0173 | 0.8545 | - |
0.7451 | 190 | 0.017 | 0.0171 | 0.8546 | - |
0.7843 | 200 | 0.0206 | 0.0168 | 0.8548 | - |
0.8235 | 210 | 0.016 | 0.0163 | 0.8549 | - |
0.8627 | 220 | 0.0173 | 0.0161 | 0.8552 | - |
0.9020 | 230 | 0.0161 | 0.0158 | 0.8553 | - |
0.9412 | 240 | 0.0173 | 0.0156 | 0.8553 | - |
0.9804 | 250 | 0.0131 | 0.0155 | 0.8552 | - |
1.0196 | 260 | 0.0175 | 0.0152 | 0.8554 | - |
1.0588 | 270 | 0.015 | 0.0149 | 0.8555 | - |
1.0980 | 280 | 0.0119 | 0.0145 | 0.8556 | - |
1.1373 | 290 | 0.0126 | 0.0143 | 0.8557 | - |
1.1765 | 300 | 0.0133 | 0.0141 | 0.8557 | - |
1.2157 | 310 | 0.0134 | 0.0138 | 0.8557 | - |
1.2549 | 320 | 0.0123 | 0.0136 | 0.8558 | - |
1.2941 | 330 | 0.0118 | 0.0135 | 0.8558 | - |
1.3333 | 340 | 0.0117 | 0.0134 | 0.8558 | - |
1.3725 | 350 | 0.0143 | 0.0133 | 0.8559 | - |
1.4118 | 360 | 0.0118 | 0.0131 | 0.8559 | - |
1.4510 | 370 | 0.0119 | 0.0129 | 0.8563 | - |
1.4902 | 380 | 0.0117 | 0.0126 | 0.8565 | - |
1.5294 | 390 | 0.0132 | 0.0125 | 0.8566 | - |
1.5686 | 400 | 0.0112 | 0.0124 | 0.8566 | - |
1.6078 | 410 | 0.0117 | 0.0125 | 0.8566 | - |
1.6471 | 420 | 0.013 | 0.0125 | 0.8566 | - |
1.6863 | 430 | 0.0109 | 0.0123 | 0.8566 | - |
1.7255 | 440 | 0.0135 | 0.0123 | 0.8566 | - |
1.7647 | 450 | 0.0116 | 0.0123 | 0.8566 | - |
1.8039 | 460 | 0.0115 | 0.0121 | 0.8566 | - |
1.8431 | 470 | 0.0116 | 0.0119 | 0.8566 | - |
1.8824 | 480 | 0.013 | 0.0118 | 0.8567 | - |
1.9216 | 490 | 0.0114 | 0.0117 | 0.8567 | - |
1.9608 | 500 | 0.0111 | 0.0117 | 0.8567 | - |
2.0 | 510 | 0.0114 | 0.0115 | 0.8567 | - |
2.0392 | 520 | 0.0098 | 0.0113 | 0.8567 | - |
2.0784 | 530 | 0.0075 | 0.0112 | 0.8567 | - |
2.1176 | 540 | 0.0089 | 0.0112 | 0.8567 | - |
2.1569 | 550 | 0.0083 | 0.0111 | 0.8567 | - |
2.1961 | 560 | 0.0077 | 0.0110 | 0.8567 | - |
2.2353 | 570 | 0.0128 | 0.0110 | 0.8567 | - |
2.2745 | 580 | 0.0092 | 0.0109 | 0.8567 | - |
2.3137 | 590 | 0.0103 | 0.0109 | 0.8567 | - |
2.3529 | 600 | 0.009 | 0.0108 | 0.8567 | - |
2.3922 | 610 | 0.0086 | 0.0108 | 0.8567 | - |
2.4314 | 620 | 0.0076 | 0.0108 | 0.8567 | - |
2.4706 | 630 | 0.0101 | 0.0107 | 0.8568 | - |
2.5098 | 640 | 0.0094 | 0.0107 | 0.8568 | - |
2.5490 | 650 | 0.0102 | 0.0107 | 0.8568 | - |
2.5882 | 660 | 0.008 | 0.0106 | 0.8568 | - |
2.6275 | 670 | 0.0091 | 0.0106 | 0.8568 | - |
2.6667 | 680 | 0.0101 | 0.0106 | 0.8568 | - |
2.7059 | 690 | 0.0119 | 0.0105 | 0.8568 | - |
2.7451 | 700 | 0.0081 | 0.0105 | 0.8568 | - |
2.7843 | 710 | 0.0098 | 0.0105 | 0.8568 | - |
2.8235 | 720 | 0.0076 | 0.0105 | 0.8568 | - |
2.8627 | 730 | 0.009 | 0.0105 | 0.8568 | - |
2.9020 | 740 | 0.0091 | 0.0105 | 0.8568 | - |
2.9412 | 750 | 0.0106 | 0.0105 | 0.8568 | - |
2.9804 | 760 | 0.0097 | 0.0105 | 0.8568 | - |
-1 | -1 | - | - | - | 0.8589 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}