|
--- |
|
base_model: MiMe-MeMo/MeMo-BERT-03 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: memo3_FGN |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# memo3_FGN |
|
|
|
This model is a fine-tuned version of [MiMe-MeMo/MeMo-BERT-03](https://huggingface.co/MiMe-MeMo/MeMo-BERT-03) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3348 |
|
- F1-score: 0.8316 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1-score | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| No log | 1.0 | 120 | 0.4934 | 0.8027 | |
|
| No log | 2.0 | 240 | 0.5542 | 0.8121 | |
|
| No log | 3.0 | 360 | 0.8229 | 0.8168 | |
|
| No log | 4.0 | 480 | 0.9300 | 0.8123 | |
|
| 0.4028 | 5.0 | 600 | 1.1413 | 0.8057 | |
|
| 0.4028 | 6.0 | 720 | 1.3327 | 0.7989 | |
|
| 0.4028 | 7.0 | 840 | 1.5178 | 0.7851 | |
|
| 0.4028 | 8.0 | 960 | 1.1979 | 0.8299 | |
|
| 0.0435 | 9.0 | 1080 | 1.2149 | 0.8307 | |
|
| 0.0435 | 10.0 | 1200 | 1.2327 | 0.8302 | |
|
| 0.0435 | 11.0 | 1320 | 1.2521 | 0.8312 | |
|
| 0.0435 | 12.0 | 1440 | 1.2734 | 0.8304 | |
|
| 0.0238 | 13.0 | 1560 | 1.3348 | 0.8316 | |
|
| 0.0238 | 14.0 | 1680 | 1.3715 | 0.8181 | |
|
| 0.0238 | 15.0 | 1800 | 1.4095 | 0.8064 | |
|
| 0.0238 | 16.0 | 1920 | 1.4157 | 0.8179 | |
|
| 0.0099 | 17.0 | 2040 | 1.4234 | 0.8179 | |
|
| 0.0099 | 18.0 | 2160 | 1.4038 | 0.8127 | |
|
| 0.0099 | 19.0 | 2280 | 1.4404 | 0.8117 | |
|
| 0.0099 | 20.0 | 2400 | 1.4436 | 0.8117 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |
|
|