|
--- |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
inference: true |
|
widget: |
|
- text: Hello! |
|
example_title: Hello world |
|
group: Python |
|
--- |
|
|
|
This tiny model is for debugging. It is randomly initialized with the config adapted from [Qwen/Qwen3-235B-A22B](https://huggingface.co/Qwen/Qwen3-235B-A22B). |
|
|
|
### Example usage: |
|
|
|
```python |
|
from transformers import pipeline |
|
model_id = "yujiepan/qwen3-moe-tiny-random" |
|
pipe = pipeline( |
|
"text-generation", model=model_id, device="cuda", |
|
trust_remote_code=True, max_new_tokens=3, |
|
) |
|
print(pipe("Hello World!")) |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
prompt = "Give me a short introduction to large language model." |
|
messages = [ |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True, |
|
enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. |
|
) |
|
print(text) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
generated_ids = model.generate( |
|
**model_inputs, |
|
max_new_tokens=128 |
|
) |
|
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() |
|
try: |
|
# rindex finding 151668 (</think>) |
|
index = len(output_ids) - output_ids[::-1].index(151668) |
|
except ValueError: |
|
index = 0 |
|
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") |
|
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") |
|
print("thinking content:", thinking_content) |
|
print("content:", content) |
|
``` |
|
|
|
### Codes to create this repo: |
|
|
|
```python |
|
import torch |
|
|
|
from transformers import ( |
|
AutoConfig, |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
GenerationConfig, |
|
pipeline, |
|
set_seed, |
|
) |
|
|
|
source_model_id = "Qwen/Qwen3-235B-A22B" |
|
save_folder = "/tmp/yujiepan/qwen3-moe-tiny-random" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
source_model_id, trust_remote_code=True, |
|
) |
|
tokenizer.save_pretrained(save_folder) |
|
|
|
config = AutoConfig.from_pretrained( |
|
source_model_id, trust_remote_code=True, |
|
) |
|
config._name_or_path = source_model_id |
|
config.hidden_size = 64 |
|
config.intermediate_size = 128 |
|
config.moe_intermediate_size = 128 |
|
config.head_dim = 32 |
|
config.decoder_sparse_step = 2 # layer0=mlp, layer1=moe |
|
config.num_experts = 8 |
|
config.num_experts_per_tok = 2 |
|
config.num_key_value_heads = 1 |
|
config.num_attention_heads = 2 |
|
config.num_hidden_layers = 2 |
|
config.max_window_layers = 1 |
|
config.tie_word_embeddings = True |
|
model = AutoModelForCausalLM.from_config( |
|
config, |
|
torch_dtype=torch.bfloat16, |
|
trust_remote_code=True, |
|
) |
|
model.generation_config = GenerationConfig.from_pretrained( |
|
source_model_id, trust_remote_code=True, |
|
) |
|
set_seed(42) |
|
with torch.no_grad(): |
|
for name, p in sorted(model.named_parameters()): |
|
torch.nn.init.normal_(p, 0, 0.5) |
|
print(name, p.shape) |
|
model.save_pretrained(save_folder) |
|
``` |