zengchen's picture
Update README.md
cb59bdc
|
raw
history blame
924 Bytes
metadata
license: mit
datasets:
  - imdb
widget:
  - text: I like this movie. That sounds so good!
    example_title: Positive
    output:
      - label: Positive
        score: 0.99
      - label: Negative
        score: 0.01
  - text: I don't like this. It smells disgusting.
    output:
      - label: Positive
        score: 0.02
      - label: Negative
        score: 0.98
    example_title: Negative

对bert-base-uncased模型进行微调的情感分析,数据集采用IMDB。

具体参数如下:

training_args = TrainingArguments(
    output_dir='./results/trainer',
    num_train_epochs=3,
    per_device_train_batch_size=8,
    per_device_eval_batch_size=8,
    warmup_steps=500,
    weight_decay=0.01,
    logging_dir='./logs',
    logging_steps=10,
    load_best_model_at_end=True,
    save_strategy='epoch',
    evaluation_strategy='epoch'
)

代码仓库:https://github.com/zengchen233/sentiment-classfier