zengchen's picture
Update README.md
cb59bdc
|
raw
history blame
924 Bytes
---
license: mit
datasets:
- imdb
widget:
- text: "I like this movie. That sounds so good!"
example_title: "Positive"
output:
- label: "Positive"
score: 0.99
- label: "Negative"
score: 0.01
- text: "I don't like this. It smells disgusting."
output:
- label: "Positive"
score: 0.02
- label: "Negative"
score: 0.98
example_title: "Negative"
---
对bert-base-uncased模型进行微调的情感分析,数据集采用IMDB。
具体参数如下:
```python
training_args = TrainingArguments(
output_dir='./results/trainer',
num_train_epochs=3,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
warmup_steps=500,
weight_decay=0.01,
logging_dir='./logs',
logging_steps=10,
load_best_model_at_end=True,
save_strategy='epoch',
evaluation_strategy='epoch'
)
```
代码仓库:https://github.com/zengchen233/sentiment-classfier