NEBULA v0.4 - Technical Implementation Details
Equipo NEBULA: Francisco Angulo de Lafuente y Ángel Vega
🔬 Photonic Neural Network Implementation
Authentic Optical Physics Simulation
The photonic component uses real optical physics equations implemented in CUDA-accelerated PyTorch:
1. Snell's Law Refraction
def apply_snells_law(self, incident_angle, n1, n2):
"""Apply Snell's law: n1*sin(θ1) = n2*sin(θ2)"""
sin_theta1 = torch.sin(incident_angle)
sin_theta2 = (n1 / n2) * sin_theta1
# Handle total internal reflection
sin_theta2 = torch.clamp(sin_theta2, -1.0, 1.0)
refracted_angle = torch.asin(sin_theta2)
return refracted_angle
2. Beer-Lambert Absorption
def beer_lambert_absorption(self, intensity, absorption_coeff, path_length):
"""Beer-Lambert law: I = I₀ * exp(-α * L)"""
return intensity * torch.exp(-absorption_coeff * path_length)
3. Fresnel Reflection
def fresnel_reflection(self, n1, n2):
"""Fresnel equations for reflection coefficient"""
R = ((n1 - n2) / (n1 + n2))**2
T = 1.0 - R # Transmission coefficient
return R, T
4. Optical Interference
def optical_interference(self, wave1, wave2, phase_difference):
"""Two-wave interference pattern"""
amplitude = torch.sqrt(wave1**2 + wave2**2 + 2*wave1*wave2*torch.cos(phase_difference))
return amplitude
Wavelength Spectrum Processing
The model processes the full electromagnetic spectrum from UV to IR:
WAVELENGTH_RANGES = {
'UV': (200e-9, 400e-9), # Ultraviolet
'Visible': (400e-9, 700e-9), # Visible light
'NIR': (700e-9, 1400e-9), # Near-infrared
'IR': (1400e-9, 3000e-9) # Infrared
}
def process_spectrum(self, input_tensor):
"""Process input across electromagnetic spectrum"""
spectral_outputs = []
for band, (λ_min, λ_max) in self.WAVELENGTH_RANGES.items():
# Calculate refractive index for wavelength
n = self.sellmeier_equation(λ_min, λ_max)
# Process with wavelength-dependent optics
output = self.optical_ray_interaction(input_tensor, n, λ_min)
spectral_outputs.append(output)
return torch.stack(spectral_outputs, dim=-1)
⚛️ Quantum Memory System
Authentic Quantum Gate Implementation
All quantum gates use proper unitary matrices following quantum mechanics:
Pauli Gates
def pauli_x_gate(self):
"""Pauli-X (bit flip) gate"""
return torch.tensor([[0, 1], [1, 0]], dtype=torch.complex64)
def pauli_y_gate(self):
"""Pauli-Y gate"""
return torch.tensor([[0, -1j], [1j, 0]], dtype=torch.complex64)
def pauli_z_gate(self):
"""Pauli-Z (phase flip) gate"""
return torch.tensor([[1, 0], [0, -1]], dtype=torch.complex64)
Rotation Gates
def rx_gate(self, theta):
"""X-rotation gate: RX(θ) = exp(-iθX/2)"""
cos_half = torch.cos(theta / 2)
sin_half = torch.sin(theta / 2)
return torch.tensor([
[cos_half, -1j * sin_half],
[-1j * sin_half, cos_half]
], dtype=torch.complex64)
def ry_gate(self, theta):
"""Y-rotation gate: RY(θ) = exp(-iθY/2)"""
cos_half = torch.cos(theta / 2)
sin_half = torch.sin(theta / 2)
return torch.tensor([
[cos_half, -sin_half],
[sin_half, cos_half]
], dtype=torch.complex64)
4-Qubit Quantum Circuits
Each quantum memory neuron operates a 4-qubit system:
def create_4qubit_circuit(self, input_data):
"""Create and execute 4-qubit quantum circuit"""
# Initialize 4-qubit state |0000⟩
state = torch.zeros(16, dtype=torch.complex64)
state[0] = 1.0 # |0000⟩ state
# Apply parametrized quantum gates
for i in range(4):
# Single-qubit rotations
theta_x = input_data[i * 3]
theta_y = input_data[i * 3 + 1]
theta_z = input_data[i * 3 + 2]
state = self.apply_single_qubit_gate(state, self.rx_gate(theta_x), i)
state = self.apply_single_qubit_gate(state, self.ry_gate(theta_y), i)
state = self.apply_single_qubit_gate(state, self.rz_gate(theta_z), i)
# Apply entangling gates (CNOT)
for i in range(3):
state = self.apply_cnot_gate(state, control=i, target=i+1)
return state
Quantum State Measurement
def measure_quantum_state(self, quantum_state):
"""Measure quantum state and return classical information"""
# Calculate measurement probabilities
probabilities = torch.abs(quantum_state)**2
# Expectation values for Pauli operators
expectations = []
for pauli_op in [self.pauli_x, self.pauli_y, self.pauli_z]:
expectation = torch.real(torch.conj(quantum_state) @ pauli_op @ quantum_state)
expectations.append(expectation)
return torch.stack(expectations)
🌈 Holographic Memory System
Complex Number Holographic Storage
The holographic memory uses complex numbers to store interference patterns:
def holographic_encode(self, object_beam, reference_beam):
"""Create holographic interference pattern"""
# Convert to complex representation
object_complex = torch.complex(object_beam, torch.zeros_like(object_beam))
reference_complex = torch.complex(reference_beam, torch.zeros_like(reference_beam))
# Create interference pattern: |O + R|²
total_beam = object_complex + reference_complex
interference_pattern = torch.abs(total_beam)**2
# Store phase information
phase_pattern = torch.angle(total_beam)
# Combine amplitude and phase
hologram = torch.complex(interference_pattern, phase_pattern)
return hologram
FFT-Based Spatial Frequency Processing
def spatial_frequency_encoding(self, spatial_pattern):
"""Encode spatial patterns using FFT"""
# 2D Fourier transform for spatial frequencies
fft_pattern = torch.fft.fft2(spatial_pattern)
# Extract magnitude and phase
magnitude = torch.abs(fft_pattern)
phase = torch.angle(fft_pattern)
# Apply frequency-domain filtering
filtered_magnitude = self.frequency_filter(magnitude)
# Reconstruct complex pattern
filtered_pattern = filtered_magnitude * torch.exp(1j * phase)
return filtered_pattern
Associative Memory Retrieval
def associative_retrieval(self, query_pattern, stored_holograms):
"""Retrieve associated memories using holographic correlation"""
correlations = []
for hologram in stored_holograms:
# Cross-correlation in frequency domain
query_fft = torch.fft.fft2(query_pattern)
hologram_fft = torch.fft.fft2(hologram)
# Correlation: F⁻¹[F(query) * conj(F(hologram))]
correlation = torch.fft.ifft2(query_fft * torch.conj(hologram_fft))
# Find correlation peak
max_correlation = torch.max(torch.abs(correlation))
correlations.append(max_correlation)
return torch.stack(correlations)
🚀 RTX GPU Optimization
Tensor Core Optimization
The RTX optimizer aligns operations for maximum Tensor Core efficiency:
def optimize_for_tensor_cores(self, layer_dims):
"""Optimize layer dimensions for Tensor Core efficiency"""
optimized_dims = []
for dim in layer_dims:
if self.has_tensor_cores:
# Align to multiples of 8 for FP16 Tensor Cores
aligned_dim = ((dim + 7) // 8) * 8
else:
# Standard alignment for regular cores
aligned_dim = ((dim + 3) // 4) * 4
optimized_dims.append(aligned_dim)
return optimized_dims
Mixed Precision Training
def mixed_precision_forward(self, model, input_tensor):
"""Forward pass with automatic mixed precision"""
if self.use_mixed_precision:
with torch.amp.autocast('cuda', dtype=self.precision_dtype):
output = model(input_tensor)
else:
output = model(input_tensor)
return output
def mixed_precision_backward(self, loss, optimizer):
"""Backward pass with gradient scaling"""
if self.use_mixed_precision:
# Scale loss to prevent underflow
self.grad_scaler.scale(loss).backward()
# Unscale gradients and step
self.grad_scaler.step(optimizer)
self.grad_scaler.update()
else:
loss.backward()
optimizer.step()
Dynamic Memory Management
def optimize_memory_usage(self):
"""Optimize GPU memory allocation patterns"""
# Clear fragmented memory
torch.cuda.empty_cache()
# Set memory fraction to prevent OOM
if torch.cuda.is_available():
torch.cuda.set_per_process_memory_fraction(0.9)
# Enable memory pool for efficient allocation
if hasattr(torch.cuda, 'set_memory_pool'):
pool = torch.cuda.memory.MemoryPool()
torch.cuda.set_memory_pool(pool)
🔧 Model Integration Architecture
Unified Forward Pass
The complete NEBULA model integrates all components:
def unified_forward(self, input_tensor):
"""Unified forward pass through all NEBULA components"""
batch_size = input_tensor.shape[0]
results = {}
# 1. Photonic processing
photonic_output = self.photonic_raytracer(input_tensor)
results['photonic_features'] = photonic_output
# 2. Quantum memory processing
quantum_output = self.quantum_memory_bank(photonic_output)
results['quantum_memory'] = quantum_output
# 3. Holographic memory retrieval
holographic_output = self.holographic_memory(
query=quantum_output, mode='retrieve'
)
results['holographic_retrieval'] = holographic_output
# 4. Feature integration
integrated_features = torch.cat([
photonic_output,
quantum_output,
holographic_output['retrieved_knowledge']
], dim=-1)
# 5. Final classification
main_output = self.classifier(integrated_features)
constraint_violations = self.constraint_detector(main_output)
results.update({
'main_output': main_output,
'constraint_violations': constraint_violations,
'integrated_features': integrated_features
})
return results
📊 Performance Optimization Techniques
Gradient Flow Optimization
def optimize_gradients(self):
"""Ensure stable gradient flow through all components"""
# Gradient clipping for stability
torch.nn.utils.clip_grad_norm_(self.parameters(), max_norm=1.0)
# Check for gradient explosion/vanishing
total_norm = 0
for p in self.parameters():
if p.grad is not None:
param_norm = p.grad.data.norm(2)
total_norm += param_norm.item() ** 2
total_norm = total_norm ** (1. / 2)
return total_norm
Computational Efficiency Monitoring
def profile_forward_pass(self, input_tensor):
"""Profile computational efficiency of forward pass"""
import time
torch.cuda.synchronize()
start_time = time.time()
# Component-wise timing
timings = {}
# Photonic timing
torch.cuda.synchronize()
photonic_start = time.time()
photonic_out = self.photonic_raytracer(input_tensor)
torch.cuda.synchronize()
timings['photonic'] = time.time() - photonic_start
# Quantum timing
torch.cuda.synchronize()
quantum_start = time.time()
quantum_out = self.quantum_memory_bank(photonic_out)
torch.cuda.synchronize()
timings['quantum'] = time.time() - quantum_start
# Holographic timing
torch.cuda.synchronize()
holo_start = time.time()
holo_out = self.holographic_memory(quantum_out, mode='retrieve')
torch.cuda.synchronize()
timings['holographic'] = time.time() - holo_start
torch.cuda.synchronize()
total_time = time.time() - start_time
timings['total'] = total_time
return timings
🧪 Scientific Validation Framework
Statistical Significance Testing
def validate_statistical_significance(self, model_scores, baseline_scores, alpha=0.05):
"""Perform statistical significance testing"""
from scipy import stats
# Perform t-test
t_statistic, p_value = stats.ttest_ind(model_scores, baseline_scores)
# Calculate effect size (Cohen's d)
pooled_std = np.sqrt(((len(model_scores)-1)*np.std(model_scores)**2 +
(len(baseline_scores)-1)*np.std(baseline_scores)**2) /
(len(model_scores) + len(baseline_scores) - 2))
cohens_d = (np.mean(model_scores) - np.mean(baseline_scores)) / pooled_std
is_significant = p_value < alpha
return {
't_statistic': t_statistic,
'p_value': p_value,
'cohens_d': cohens_d,
'is_significant': is_significant,
'effect_size': 'large' if abs(cohens_d) > 0.8 else 'medium' if abs(cohens_d) > 0.5 else 'small'
}
Reproducibility Verification
def verify_reproducibility(self, seed=42, num_runs=5):
"""Verify model reproducibility across multiple runs"""
results = []
for run in range(num_runs):
# Set all random seeds
torch.manual_seed(seed + run)
np.random.seed(seed + run)
torch.cuda.manual_seed_all(seed + run)
# Ensure deterministic operations
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# Run evaluation
model_copy = self.create_fresh_model()
accuracy = self.evaluate_model(model_copy)
results.append(accuracy)
# Calculate consistency metrics
mean_accuracy = np.mean(results)
std_accuracy = np.std(results)
cv = std_accuracy / mean_accuracy # Coefficient of variation
return {
'mean_accuracy': mean_accuracy,
'std_accuracy': std_accuracy,
'coefficient_variation': cv,
'all_results': results,
'is_reproducible': cv < 0.05 # Less than 5% variation
}
This technical documentation provides the complete implementation details for all NEBULA v0.4 components, ensuring full reproducibility and scientific transparency.
Equipo NEBULA: Francisco Angulo de Lafuente y Ángel Vega
Project NEBULA - Authentic Photonic Neural Networks