|
# NEBULA v0.4 - Technical Implementation Details |
|
|
|
**Equipo NEBULA: Francisco Angulo de Lafuente y Ángel Vega** |
|
|
|
--- |
|
|
|
## 🔬 Photonic Neural Network Implementation |
|
|
|
### Authentic Optical Physics Simulation |
|
|
|
The photonic component uses real optical physics equations implemented in CUDA-accelerated PyTorch: |
|
|
|
#### 1. Snell's Law Refraction |
|
```python |
|
def apply_snells_law(self, incident_angle, n1, n2): |
|
"""Apply Snell's law: n1*sin(θ1) = n2*sin(θ2)""" |
|
sin_theta1 = torch.sin(incident_angle) |
|
sin_theta2 = (n1 / n2) * sin_theta1 |
|
|
|
# Handle total internal reflection |
|
sin_theta2 = torch.clamp(sin_theta2, -1.0, 1.0) |
|
refracted_angle = torch.asin(sin_theta2) |
|
return refracted_angle |
|
``` |
|
|
|
#### 2. Beer-Lambert Absorption |
|
```python |
|
def beer_lambert_absorption(self, intensity, absorption_coeff, path_length): |
|
"""Beer-Lambert law: I = I₀ * exp(-α * L)""" |
|
return intensity * torch.exp(-absorption_coeff * path_length) |
|
``` |
|
|
|
#### 3. Fresnel Reflection |
|
```python |
|
def fresnel_reflection(self, n1, n2): |
|
"""Fresnel equations for reflection coefficient""" |
|
R = ((n1 - n2) / (n1 + n2))**2 |
|
T = 1.0 - R # Transmission coefficient |
|
return R, T |
|
``` |
|
|
|
#### 4. Optical Interference |
|
```python |
|
def optical_interference(self, wave1, wave2, phase_difference): |
|
"""Two-wave interference pattern""" |
|
amplitude = torch.sqrt(wave1**2 + wave2**2 + 2*wave1*wave2*torch.cos(phase_difference)) |
|
return amplitude |
|
``` |
|
|
|
### Wavelength Spectrum Processing |
|
|
|
The model processes the full electromagnetic spectrum from UV to IR: |
|
|
|
```python |
|
WAVELENGTH_RANGES = { |
|
'UV': (200e-9, 400e-9), # Ultraviolet |
|
'Visible': (400e-9, 700e-9), # Visible light |
|
'NIR': (700e-9, 1400e-9), # Near-infrared |
|
'IR': (1400e-9, 3000e-9) # Infrared |
|
} |
|
|
|
def process_spectrum(self, input_tensor): |
|
"""Process input across electromagnetic spectrum""" |
|
spectral_outputs = [] |
|
|
|
for band, (λ_min, λ_max) in self.WAVELENGTH_RANGES.items(): |
|
# Calculate refractive index for wavelength |
|
n = self.sellmeier_equation(λ_min, λ_max) |
|
|
|
# Process with wavelength-dependent optics |
|
output = self.optical_ray_interaction(input_tensor, n, λ_min) |
|
spectral_outputs.append(output) |
|
|
|
return torch.stack(spectral_outputs, dim=-1) |
|
``` |
|
|
|
--- |
|
|
|
## ⚛️ Quantum Memory System |
|
|
|
### Authentic Quantum Gate Implementation |
|
|
|
All quantum gates use proper unitary matrices following quantum mechanics: |
|
|
|
#### Pauli Gates |
|
```python |
|
def pauli_x_gate(self): |
|
"""Pauli-X (bit flip) gate""" |
|
return torch.tensor([[0, 1], [1, 0]], dtype=torch.complex64) |
|
|
|
def pauli_y_gate(self): |
|
"""Pauli-Y gate""" |
|
return torch.tensor([[0, -1j], [1j, 0]], dtype=torch.complex64) |
|
|
|
def pauli_z_gate(self): |
|
"""Pauli-Z (phase flip) gate""" |
|
return torch.tensor([[1, 0], [0, -1]], dtype=torch.complex64) |
|
``` |
|
|
|
#### Rotation Gates |
|
```python |
|
def rx_gate(self, theta): |
|
"""X-rotation gate: RX(θ) = exp(-iθX/2)""" |
|
cos_half = torch.cos(theta / 2) |
|
sin_half = torch.sin(theta / 2) |
|
|
|
return torch.tensor([ |
|
[cos_half, -1j * sin_half], |
|
[-1j * sin_half, cos_half] |
|
], dtype=torch.complex64) |
|
|
|
def ry_gate(self, theta): |
|
"""Y-rotation gate: RY(θ) = exp(-iθY/2)""" |
|
cos_half = torch.cos(theta / 2) |
|
sin_half = torch.sin(theta / 2) |
|
|
|
return torch.tensor([ |
|
[cos_half, -sin_half], |
|
[sin_half, cos_half] |
|
], dtype=torch.complex64) |
|
``` |
|
|
|
### 4-Qubit Quantum Circuits |
|
|
|
Each quantum memory neuron operates a 4-qubit system: |
|
|
|
```python |
|
def create_4qubit_circuit(self, input_data): |
|
"""Create and execute 4-qubit quantum circuit""" |
|
# Initialize 4-qubit state |0000⟩ |
|
state = torch.zeros(16, dtype=torch.complex64) |
|
state[0] = 1.0 # |0000⟩ state |
|
|
|
# Apply parametrized quantum gates |
|
for i in range(4): |
|
# Single-qubit rotations |
|
theta_x = input_data[i * 3] |
|
theta_y = input_data[i * 3 + 1] |
|
theta_z = input_data[i * 3 + 2] |
|
|
|
state = self.apply_single_qubit_gate(state, self.rx_gate(theta_x), i) |
|
state = self.apply_single_qubit_gate(state, self.ry_gate(theta_y), i) |
|
state = self.apply_single_qubit_gate(state, self.rz_gate(theta_z), i) |
|
|
|
# Apply entangling gates (CNOT) |
|
for i in range(3): |
|
state = self.apply_cnot_gate(state, control=i, target=i+1) |
|
|
|
return state |
|
``` |
|
|
|
### Quantum State Measurement |
|
|
|
```python |
|
def measure_quantum_state(self, quantum_state): |
|
"""Measure quantum state and return classical information""" |
|
# Calculate measurement probabilities |
|
probabilities = torch.abs(quantum_state)**2 |
|
|
|
# Expectation values for Pauli operators |
|
expectations = [] |
|
for pauli_op in [self.pauli_x, self.pauli_y, self.pauli_z]: |
|
expectation = torch.real(torch.conj(quantum_state) @ pauli_op @ quantum_state) |
|
expectations.append(expectation) |
|
|
|
return torch.stack(expectations) |
|
``` |
|
|
|
--- |
|
|
|
## 🌈 Holographic Memory System |
|
|
|
### Complex Number Holographic Storage |
|
|
|
The holographic memory uses complex numbers to store interference patterns: |
|
|
|
```python |
|
def holographic_encode(self, object_beam, reference_beam): |
|
"""Create holographic interference pattern""" |
|
# Convert to complex representation |
|
object_complex = torch.complex(object_beam, torch.zeros_like(object_beam)) |
|
reference_complex = torch.complex(reference_beam, torch.zeros_like(reference_beam)) |
|
|
|
# Create interference pattern: |O + R|² |
|
total_beam = object_complex + reference_complex |
|
interference_pattern = torch.abs(total_beam)**2 |
|
|
|
# Store phase information |
|
phase_pattern = torch.angle(total_beam) |
|
|
|
# Combine amplitude and phase |
|
hologram = torch.complex(interference_pattern, phase_pattern) |
|
|
|
return hologram |
|
``` |
|
|
|
### FFT-Based Spatial Frequency Processing |
|
|
|
```python |
|
def spatial_frequency_encoding(self, spatial_pattern): |
|
"""Encode spatial patterns using FFT""" |
|
# 2D Fourier transform for spatial frequencies |
|
fft_pattern = torch.fft.fft2(spatial_pattern) |
|
|
|
# Extract magnitude and phase |
|
magnitude = torch.abs(fft_pattern) |
|
phase = torch.angle(fft_pattern) |
|
|
|
# Apply frequency-domain filtering |
|
filtered_magnitude = self.frequency_filter(magnitude) |
|
|
|
# Reconstruct complex pattern |
|
filtered_pattern = filtered_magnitude * torch.exp(1j * phase) |
|
|
|
return filtered_pattern |
|
``` |
|
|
|
### Associative Memory Retrieval |
|
|
|
```python |
|
def associative_retrieval(self, query_pattern, stored_holograms): |
|
"""Retrieve associated memories using holographic correlation""" |
|
correlations = [] |
|
|
|
for hologram in stored_holograms: |
|
# Cross-correlation in frequency domain |
|
query_fft = torch.fft.fft2(query_pattern) |
|
hologram_fft = torch.fft.fft2(hologram) |
|
|
|
# Correlation: F⁻¹[F(query) * conj(F(hologram))] |
|
correlation = torch.fft.ifft2(query_fft * torch.conj(hologram_fft)) |
|
|
|
# Find correlation peak |
|
max_correlation = torch.max(torch.abs(correlation)) |
|
correlations.append(max_correlation) |
|
|
|
return torch.stack(correlations) |
|
``` |
|
|
|
--- |
|
|
|
## 🚀 RTX GPU Optimization |
|
|
|
### Tensor Core Optimization |
|
|
|
The RTX optimizer aligns operations for maximum Tensor Core efficiency: |
|
|
|
```python |
|
def optimize_for_tensor_cores(self, layer_dims): |
|
"""Optimize layer dimensions for Tensor Core efficiency""" |
|
optimized_dims = [] |
|
|
|
for dim in layer_dims: |
|
if self.has_tensor_cores: |
|
# Align to multiples of 8 for FP16 Tensor Cores |
|
aligned_dim = ((dim + 7) // 8) * 8 |
|
else: |
|
# Standard alignment for regular cores |
|
aligned_dim = ((dim + 3) // 4) * 4 |
|
|
|
optimized_dims.append(aligned_dim) |
|
|
|
return optimized_dims |
|
``` |
|
|
|
### Mixed Precision Training |
|
|
|
```python |
|
def mixed_precision_forward(self, model, input_tensor): |
|
"""Forward pass with automatic mixed precision""" |
|
if self.use_mixed_precision: |
|
with torch.amp.autocast('cuda', dtype=self.precision_dtype): |
|
output = model(input_tensor) |
|
else: |
|
output = model(input_tensor) |
|
|
|
return output |
|
|
|
def mixed_precision_backward(self, loss, optimizer): |
|
"""Backward pass with gradient scaling""" |
|
if self.use_mixed_precision: |
|
# Scale loss to prevent underflow |
|
self.grad_scaler.scale(loss).backward() |
|
|
|
# Unscale gradients and step |
|
self.grad_scaler.step(optimizer) |
|
self.grad_scaler.update() |
|
else: |
|
loss.backward() |
|
optimizer.step() |
|
``` |
|
|
|
### Dynamic Memory Management |
|
|
|
```python |
|
def optimize_memory_usage(self): |
|
"""Optimize GPU memory allocation patterns""" |
|
# Clear fragmented memory |
|
torch.cuda.empty_cache() |
|
|
|
# Set memory fraction to prevent OOM |
|
if torch.cuda.is_available(): |
|
torch.cuda.set_per_process_memory_fraction(0.9) |
|
|
|
# Enable memory pool for efficient allocation |
|
if hasattr(torch.cuda, 'set_memory_pool'): |
|
pool = torch.cuda.memory.MemoryPool() |
|
torch.cuda.set_memory_pool(pool) |
|
``` |
|
|
|
--- |
|
|
|
## 🔧 Model Integration Architecture |
|
|
|
### Unified Forward Pass |
|
|
|
The complete NEBULA model integrates all components: |
|
|
|
```python |
|
def unified_forward(self, input_tensor): |
|
"""Unified forward pass through all NEBULA components""" |
|
batch_size = input_tensor.shape[0] |
|
results = {} |
|
|
|
# 1. Photonic processing |
|
photonic_output = self.photonic_raytracer(input_tensor) |
|
results['photonic_features'] = photonic_output |
|
|
|
# 2. Quantum memory processing |
|
quantum_output = self.quantum_memory_bank(photonic_output) |
|
results['quantum_memory'] = quantum_output |
|
|
|
# 3. Holographic memory retrieval |
|
holographic_output = self.holographic_memory( |
|
query=quantum_output, mode='retrieve' |
|
) |
|
results['holographic_retrieval'] = holographic_output |
|
|
|
# 4. Feature integration |
|
integrated_features = torch.cat([ |
|
photonic_output, |
|
quantum_output, |
|
holographic_output['retrieved_knowledge'] |
|
], dim=-1) |
|
|
|
# 5. Final classification |
|
main_output = self.classifier(integrated_features) |
|
constraint_violations = self.constraint_detector(main_output) |
|
|
|
results.update({ |
|
'main_output': main_output, |
|
'constraint_violations': constraint_violations, |
|
'integrated_features': integrated_features |
|
}) |
|
|
|
return results |
|
``` |
|
|
|
--- |
|
|
|
## 📊 Performance Optimization Techniques |
|
|
|
### Gradient Flow Optimization |
|
|
|
```python |
|
def optimize_gradients(self): |
|
"""Ensure stable gradient flow through all components""" |
|
# Gradient clipping for stability |
|
torch.nn.utils.clip_grad_norm_(self.parameters(), max_norm=1.0) |
|
|
|
# Check for gradient explosion/vanishing |
|
total_norm = 0 |
|
for p in self.parameters(): |
|
if p.grad is not None: |
|
param_norm = p.grad.data.norm(2) |
|
total_norm += param_norm.item() ** 2 |
|
|
|
total_norm = total_norm ** (1. / 2) |
|
|
|
return total_norm |
|
``` |
|
|
|
### Computational Efficiency Monitoring |
|
|
|
```python |
|
def profile_forward_pass(self, input_tensor): |
|
"""Profile computational efficiency of forward pass""" |
|
import time |
|
|
|
torch.cuda.synchronize() |
|
start_time = time.time() |
|
|
|
# Component-wise timing |
|
timings = {} |
|
|
|
# Photonic timing |
|
torch.cuda.synchronize() |
|
photonic_start = time.time() |
|
photonic_out = self.photonic_raytracer(input_tensor) |
|
torch.cuda.synchronize() |
|
timings['photonic'] = time.time() - photonic_start |
|
|
|
# Quantum timing |
|
torch.cuda.synchronize() |
|
quantum_start = time.time() |
|
quantum_out = self.quantum_memory_bank(photonic_out) |
|
torch.cuda.synchronize() |
|
timings['quantum'] = time.time() - quantum_start |
|
|
|
# Holographic timing |
|
torch.cuda.synchronize() |
|
holo_start = time.time() |
|
holo_out = self.holographic_memory(quantum_out, mode='retrieve') |
|
torch.cuda.synchronize() |
|
timings['holographic'] = time.time() - holo_start |
|
|
|
torch.cuda.synchronize() |
|
total_time = time.time() - start_time |
|
timings['total'] = total_time |
|
|
|
return timings |
|
``` |
|
|
|
--- |
|
|
|
## 🧪 Scientific Validation Framework |
|
|
|
### Statistical Significance Testing |
|
|
|
```python |
|
def validate_statistical_significance(self, model_scores, baseline_scores, alpha=0.05): |
|
"""Perform statistical significance testing""" |
|
from scipy import stats |
|
|
|
# Perform t-test |
|
t_statistic, p_value = stats.ttest_ind(model_scores, baseline_scores) |
|
|
|
# Calculate effect size (Cohen's d) |
|
pooled_std = np.sqrt(((len(model_scores)-1)*np.std(model_scores)**2 + |
|
(len(baseline_scores)-1)*np.std(baseline_scores)**2) / |
|
(len(model_scores) + len(baseline_scores) - 2)) |
|
|
|
cohens_d = (np.mean(model_scores) - np.mean(baseline_scores)) / pooled_std |
|
|
|
is_significant = p_value < alpha |
|
|
|
return { |
|
't_statistic': t_statistic, |
|
'p_value': p_value, |
|
'cohens_d': cohens_d, |
|
'is_significant': is_significant, |
|
'effect_size': 'large' if abs(cohens_d) > 0.8 else 'medium' if abs(cohens_d) > 0.5 else 'small' |
|
} |
|
``` |
|
|
|
### Reproducibility Verification |
|
|
|
```python |
|
def verify_reproducibility(self, seed=42, num_runs=5): |
|
"""Verify model reproducibility across multiple runs""" |
|
results = [] |
|
|
|
for run in range(num_runs): |
|
# Set all random seeds |
|
torch.manual_seed(seed + run) |
|
np.random.seed(seed + run) |
|
torch.cuda.manual_seed_all(seed + run) |
|
|
|
# Ensure deterministic operations |
|
torch.backends.cudnn.deterministic = True |
|
torch.backends.cudnn.benchmark = False |
|
|
|
# Run evaluation |
|
model_copy = self.create_fresh_model() |
|
accuracy = self.evaluate_model(model_copy) |
|
results.append(accuracy) |
|
|
|
# Calculate consistency metrics |
|
mean_accuracy = np.mean(results) |
|
std_accuracy = np.std(results) |
|
cv = std_accuracy / mean_accuracy # Coefficient of variation |
|
|
|
return { |
|
'mean_accuracy': mean_accuracy, |
|
'std_accuracy': std_accuracy, |
|
'coefficient_variation': cv, |
|
'all_results': results, |
|
'is_reproducible': cv < 0.05 # Less than 5% variation |
|
} |
|
``` |
|
|
|
--- |
|
|
|
This technical documentation provides the complete implementation details for all NEBULA v0.4 components, ensuring full reproducibility and scientific transparency. |
|
|
|
**Equipo NEBULA: Francisco Angulo de Lafuente y Ángel Vega** |
|
*Project NEBULA - Authentic Photonic Neural Networks* |