|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:77455 |
|
- loss:ContrastiveLoss |
|
base_model: deepvk/USER-bge-m3 |
|
widget: |
|
- source_sentence: Исследование антигена хеликобактера (Helicobacter pylori) |
|
sentences: |
|
- 'Токсоплазма (Toxoplasma gondii): Антитела: IgG, (количественно). Метод: ИФА' |
|
- 'Хеликобактер пилори (Helicobacter pylori): Антитела: IgG, (количественно). Метод: |
|
ИФА' |
|
- УЗИ молочных желез с эластографией |
|
- source_sentence: Антитела к ХГЧ ( IgM и IgG) |
|
sentences: |
|
- Общий анализ мочи с микроскопией |
|
- Антитела к тканевой трансглутаминазе, IgG |
|
- Прием (осмотр, консультация) врача-онколога в клинике |
|
- source_sentence: Белок общий в суточной моче |
|
sentences: |
|
- Уран в моче |
|
- Белок общий в сыворотке |
|
- Исследование уровня антигена фактора Виллебранда |
|
- source_sentence: 'Развернутая диагностика склеродермии (иммуноблот антинуклеарных |
|
антител: анти-Scl-70, CENT-A, CENT-B, RP11, RP155, Fibrillarin, NOR90, Th/To, |
|
PM-Scl 75, Ku, PDGFR, Ro-52) и антинуклеарный фактор (АНФ), иммуноблот' |
|
sentences: |
|
- 'Токсоплазма (Toxoplasma gondii): Антитела: IgG, (количественно). Метод: ИФА' |
|
- 'Эпителий кролика, IgE, аллерген - e82. Метод: ImmunoCAP' |
|
- Антинуклеарные антитела, IgG (анти-Sm, RNP/Sm, SS-A, SS-B, Scl-70, PM-Scl, PCNA, |
|
dsDNA, CENT-B, Jo-1, к гистонам, к нуклеосомам, Ribo P, AMA-M2), иммуноблот |
|
- source_sentence: Определение активности амилазы в моче |
|
sentences: |
|
- Амилаза общая в суточной моче |
|
- 'Микоплазма гениталиум (Mycoplasma genitalium): ДНК, (качественно). Метод: реал-тайм |
|
ПЦР' |
|
- 'Пенициллин V, IgE, аллерген - c2. Метод: ИФА' |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy |
|
- cosine_accuracy_threshold |
|
- cosine_f1 |
|
- cosine_f1_threshold |
|
- cosine_precision |
|
- cosine_recall |
|
- cosine_ap |
|
- cosine_mcc |
|
model-index: |
|
- name: SentenceTransformer based on deepvk/USER-bge-m3 |
|
results: |
|
- task: |
|
type: binary-classification |
|
name: Binary Classification |
|
dataset: |
|
name: binary eval test |
|
type: binary-eval-test |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.9442084651302907 |
|
name: Cosine Accuracy |
|
- type: cosine_accuracy_threshold |
|
value: 0.7781298160552979 |
|
name: Cosine Accuracy Threshold |
|
- type: cosine_f1 |
|
value: 0.8599519663764634 |
|
name: Cosine F1 |
|
- type: cosine_f1_threshold |
|
value: 0.7724614143371582 |
|
name: Cosine F1 Threshold |
|
- type: cosine_precision |
|
value: 0.8569932685115931 |
|
name: Cosine Precision |
|
- type: cosine_recall |
|
value: 0.8629311643319777 |
|
name: Cosine Recall |
|
- type: cosine_ap |
|
value: 0.9223179041268369 |
|
name: Cosine Ap |
|
- type: cosine_mcc |
|
value: 0.824796426094371 |
|
name: Cosine Mcc |
|
--- |
|
|
|
# SentenceTransformer based on deepvk/USER-bge-m3 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [deepvk/USER-bge-m3](https://huggingface.co/deepvk/USER-bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [deepvk/USER-bge-m3](https://huggingface.co/deepvk/USER-bge-m3) <!-- at revision 0cc6cfe48e260fb0474c753087a69369e88709ae --> |
|
- **Maximum Sequence Length:** 8192 tokens |
|
- **Output Dimensionality:** 1024 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel |
|
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("EvgenyBondarenko/BIEncoderRanker") |
|
# Run inference |
|
sentences = [ |
|
'Определение активности амилазы в моче', |
|
'Амилаза общая в суточной моче', |
|
'Пенициллин V, IgE, аллерген - c2. Метод: ИФА', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 1024] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Binary Classification |
|
|
|
* Dataset: `binary-eval-test` |
|
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------------|:-----------| |
|
| cosine_accuracy | 0.9442 | |
|
| cosine_accuracy_threshold | 0.7781 | |
|
| cosine_f1 | 0.86 | |
|
| cosine_f1_threshold | 0.7725 | |
|
| cosine_precision | 0.857 | |
|
| cosine_recall | 0.8629 | |
|
| **cosine_ap** | **0.9223** | |
|
| cosine_mcc | 0.8248 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
* Size: 77,455 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | label | |
|
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 22.98 tokens</li><li>max: 100 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 22.68 tokens</li><li>max: 87 tokens</li></ul> | <ul><li>0: ~80.00%</li><li>1: ~20.00%</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | label | |
|
|:-------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------| |
|
| <code>Посев с кожи на аэробную микрофлору и определение чувствительности к антимикробным препаратам</code> | <code>Посев кожи на аэробную и факультативно-анаэробную флору: Определение чувствительности к антибиотикам. Метод: культуральный</code> | <code>1</code> | |
|
| <code>Посев с кожи на аэробную микрофлору и определение чувствительности к антимикробным препаратам</code> | <code>Посев отделяемого с кожи/раны на аэробную и факультативно-анаэробную флору: Определение чувствительности к антибиотикам. Метод: культуральный</code> | <code>0</code> | |
|
| <code>Посев с кожи на аэробную микрофлору и определение чувствительности к антимикробным препаратам</code> | <code>Посев отделяемого из глаза на аэробную и факультативно-анаэробную флору: Определение чувствительности к антибиотикам. Метод: культуральный</code> | <code>0</code> | |
|
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters: |
|
```json |
|
{ |
|
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", |
|
"margin": 0.5, |
|
"size_average": true |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
* Size: 33,195 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | label | |
|
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 6 tokens</li><li>mean: 21.52 tokens</li><li>max: 92 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 23.61 tokens</li><li>max: 140 tokens</li></ul> | <ul><li>0: ~80.00%</li><li>1: ~20.00%</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | label | |
|
|:---------------------------------------------|:-------------------------------------------------------------|:---------------| |
|
| <code>транскраниальная допплерография</code> | <code>УЗИ сосудов головного мозга</code> | <code>1</code> | |
|
| <code>транскраниальная допплерография</code> | <code>УЗИ сосудов глаза (доплерография)</code> | <code>0</code> | |
|
| <code>транскраниальная допплерография</code> | <code>Магнитно-резонансная томография головного мозга</code> | <code>0</code> | |
|
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters: |
|
```json |
|
{ |
|
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", |
|
"margin": 0.5, |
|
"size_average": true |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 32 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 1 |
|
- `warmup_ratio`: 0.1 |
|
- `save_only_model`: True |
|
- `fp16`: True |
|
- `load_best_model_at_end`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 32 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: True |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | Validation Loss | binary-eval-test_cosine_ap | |
|
|:------:|:----:|:-------------:|:---------------:|:--------------------------:| |
|
| 0.2065 | 500 | 0.0125 | 0.0096 | 0.8634 | |
|
| 0.4131 | 1000 | 0.0094 | 0.0082 | 0.8940 | |
|
| 0.6196 | 1500 | 0.0086 | 0.0073 | 0.9150 | |
|
| 0.8261 | 2000 | 0.0078 | 0.0068 | 0.9223 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.4.1 |
|
- Transformers: 4.49.0 |
|
- PyTorch: 2.6.0+cu118 |
|
- Accelerate: 1.4.0 |
|
- Datasets: 3.3.2 |
|
- Tokenizers: 0.21.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### ContrastiveLoss |
|
```bibtex |
|
@inproceedings{hadsell2006dimensionality, |
|
author={Hadsell, R. and Chopra, S. and LeCun, Y.}, |
|
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)}, |
|
title={Dimensionality Reduction by Learning an Invariant Mapping}, |
|
year={2006}, |
|
volume={2}, |
|
number={}, |
|
pages={1735-1742}, |
|
doi={10.1109/CVPR.2006.100} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |