|
--- |
|
library_name: lerobot |
|
tags: |
|
- model_hub_mixin |
|
- pytorch_model_hub_mixin |
|
- robotics |
|
- dot |
|
license: apache-2.0 |
|
datasets: |
|
- lerobot/pusht |
|
pipeline_tag: robotics |
|
--- |
|
|
|
# Model Card for "Decoder Only Transformer (DOT) Policy" for PushT images dataset |
|
|
|
Read more about the model and implementation details in the [DOT Policy repository](https://github.com/IliaLarchenko/dot_policy). |
|
|
|
This model is trained using the [LeRobot library](https://huggingface.co/lerobot) and achieves state-of-the-art results on behavior cloning on the PushT images dataset. It achieves a 74.2% success rate (and 0.936 average max reward) vs. ~69% for the previous state-of-the-art model (Diffusion and VQ-BET perform the same). |
|
|
|
This result is achieved without the checkpoint selection and is easy to reproduce. |
|
|
|
You can use this model by installing LeRobot from [this branch](https://github.com/IliaLarchenko/lerobot/tree/dot) |
|
|
|
To train the model: |
|
|
|
```bash |
|
python lerobot/scripts/train.py \ |
|
--policy.type=dot \ |
|
--dataset.repo_id=lerobot/pusht \ |
|
--env.type=pusht \ |
|
--env.task=PushT-v0 \ |
|
--output_dir=outputs/train/pusht_images \ |
|
--batch_size=24 \ |
|
--log_freq=1000 \ |
|
--eval_freq=10000 \ |
|
--save_freq=50000 \ |
|
--offline.steps=1000000 \ |
|
--seed=100000 \ |
|
--wandb.enable=true \ |
|
--num_workers=24 \ |
|
--use_amp=true \ |
|
--device=cuda \ |
|
--policy.return_every_n=2 |
|
``` |
|
|
|
To evaluate the model: |
|
|
|
```bash |
|
python lerobot/scripts/eval.py \ |
|
--policy.path=IliaLarchenko/dot_pusht_images \ |
|
--env.type=pusht \ |
|
--env.task=PushT-v0 \ |
|
--eval.n_episodes=1000 \ |
|
--eval.batch_size=100 \ |
|
--seed=1000000 |
|
``` |
|
|
|
Model size: |
|
- Total parameters: 14.1m |
|
- Trainable parameters: 2.9m |