kimlong22's picture
Model save
6bd70d6 verified
metadata
license: apache-2.0
base_model: google-bert/bert-base-multilingual-cased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
model-index:
  - name: lex-cross-encoder-mbert-10neg
    results: []

lex-cross-encoder-mbert-10neg

This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4360
  • Precision: 0.6020
  • Recall: 0.8593
  • F2: 0.7917

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 128
  • total_eval_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F2
0.4572 1.0 2317 0.4705 0.4735 0.8620 0.7405
0.4283 2.0 4634 0.4515 0.4774 0.9124 0.7718
0.4115 3.0 6951 0.4485 0.4796 0.9201 0.7773
0.4021 4.0 9268 0.4387 0.5217 0.9068 0.7902
0.3918 5.0 11585 0.4466 0.6111 0.8242 0.7705
0.3879 6.0 13902 0.4337 0.5783 0.8767 0.7947
0.383 7.0 16219 0.4336 0.5633 0.8907 0.7980
0.3781 8.0 18536 0.4354 0.5929 0.8660 0.7930
0.3767 9.0 20853 0.4353 0.5980 0.8636 0.7931
0.3712 10.0 23170 0.4360 0.6020 0.8593 0.7917

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.6.0
  • Tokenizers 0.15.2