File size: 4,296 Bytes
e9dc21f
 
 
177bab0
e9dc21f
177bab0
 
e9dc21f
177bab0
e9dc21f
052f6f5
177bab0
 
 
 
 
 
b9d0736
 
177bab0
b9d0736
469851c
b9d0736
 
177bab0
b9d0736
275de1c
177bab0
 
 
154ec90
 
469851c
1429993
b9d0736
 
 
 
 
c4f4fe0
 
b9d0736
177bab0
b9d0736
177bab0
 
b9d0736
 
 
c4f4fe0
 
177bab0
b9d0736
 
 
177bab0
 
 
 
b9d0736
177bab0
b9d0736
177bab0
 
275de1c
b9d0736
177bab0
eceb8d3
 
b9d0736
177bab0
 
b9d0736
177bab0
 
 
 
8b464ec
3f69cf5
 
 
bdf42ae
 
c4f4fe0
bdf42ae
 
34cb63c
1429993
bdf42ae
2c8a21b
bdf42ae
 
 
 
2c8a21b
bdf42ae
469851c
 
 
 
 
 
b3a3d23
 
 
 
 
 
bdf42ae
 
 
 
275de1c
 
bdf42ae
58e34f1
bdf42ae
 
 
 
 
3f69cf5
58e34f1
3f69cf5
bdf42ae
3f69cf5
bdf42ae
 
3f69cf5
bdf42ae
3f69cf5
275de1c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
license: mit
language:
  - ko
metrics:
  - accuracy
  - f1
base_model:
  - facebook/convnext-tiny-224
pipeline_tag: image-classification
tags:
  - multispectral
  - convnext
  - image-classification
  - remote-sensing
  - agriculture
  - xai
---

# ConvNext_Multi ๋ชจ๋ธ ์นด๋“œ

_Last updated: 2025-09-08 02:35:46
## Model Details

ConvNext_Multi๋Š” ๋‹ค์ค‘๋ถ„๊ด‘(๋ฉ€ํ‹ฐ์ŠคํŽ™ํŠธ๋Ÿผ) ์˜์ƒ ๋ฐ์ดํ„ฐ๋ฅผ ์ž…๋ ฅ์œผ๋กœ ํ•˜์—ฌ ์ž‘๋ฌผ ๋ฐ ์‹์ƒ์„ ๋ถ„๋ฅ˜ํ•˜๋Š” ConvNeXt ๊ธฐ๋ฐ˜ ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. ๋“œ๋ก  ๋ฐ ์œ„์„ฑ์—์„œ ์ดฌ์˜ํ•œ 5๋ฐด๋“œ (Blue, Green, Red, Near-Infrared, RedEdge) ์˜์ƒ์„ ํšจ์œจ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•˜๋„๋ก ์„ค๊ณ„๋˜์–ด, ๊ณ ํ•ด์ƒ๋„ ๋†์—…ยทํ™˜๊ฒฝ ๋ชจ๋‹ˆํ„ฐ๋ง์— ์ ํ•ฉํ•ฉ๋‹ˆ๋‹ค.

- **Developed by:** AI Research Team, MuhanRnd  
- **License:** MIT  
- **Base model:** facebook/convnext-tiny-224  
- **Languages:** Korean (๋ชจ๋ธ ์ฃผ์„ ๋ฐ ๋ฌธ์„œํ™”)  
- **Model type:** ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ (๋ฉ€ํ‹ฐ๋ฐด๋“œ ์ž…๋ ฅ)
- **Created_date:** 2025-06-05 13:32:18
P25-09-08 02:35:46
P25-08-22 09:23:39

## Uses

### Direct Use

- ๋‹ค์ค‘๋ถ„๊ด‘ ์˜์ƒ ๊ธฐ๋ฐ˜ ์ƒ์œก ์ƒํƒœ ๋ถ„๋ฅ˜  
- ๋“œ๋ก  ์˜์ƒ์˜ 5๋ฐด๋“œ ์ž…๋ ฅ ๋ฉ€ํ‹ฐ์ŠคํŽ™ํŠธ๋Ÿผ ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ ์ž‘์—…

### Downstream Use

- ์œ ์‚ฌํ•œ ๋‹ค์ค‘๋ถ„๊ด‘ ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•œ ํŒŒ์ธํŠœ๋‹  
- ๋†์—… ์™ธ ๊ธฐํƒ€ ํ™˜๊ฒฝ ๋ชจ๋‹ˆํ„ฐ๋ง ๋Œ€์ƒ ๋ถ„๋ฅ˜ ๋ฌธ์ œ ์ ์šฉ ๊ฐ€๋Šฅ

### Out-of-Scope Use

- RGB 3๋ฐด๋“œ ์˜์ƒ๋งŒ์„ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ (์ž…๋ ฅ ๊ตฌ์กฐ์ƒ ํ™œ์šฉ ๋ถˆ๊ฐ€)  
- ๋ณด์ •๋˜์ง€ ์•Š์€ ๋ฉ€ํ‹ฐ๋ฐด๋“œ ์ด๋ฏธ์ง€(๋‹ค์ค‘๋ถ„๊ด‘ ๋ณด์ •๊ฐ’ ์ฒ˜๋ฆฌ ํ•„์š”)  
- ๊ฐ์ฒด ๊ฒ€์ถœ, ๋ถ„ํ•  ๋“ฑ ๋ถ„๋ฅ˜ ์ด์™ธ์˜ ํƒœ์Šคํฌ  

## Bias, Risks, and Limitations

- ๋ณธ ๋ชจ๋ธ์€ ํŠน์ • ์ง€์—ญ ๋ฐ ์ž‘๋ฌผ ๋ฐ์ดํ„ฐ๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ํ•™์Šต๋˜์—ˆ์œผ๋ฏ€๋กœ, ๋ฏธํ•™์Šต ํ™˜๊ฒฝ์—์„œ๋Š” ์„ฑ๋Šฅ ์ €ํ•˜๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ์Œ  
- ๋‹ค์ค‘๋ถ„๊ด‘ ์˜์ƒ์˜ ํ’ˆ์งˆ, ์ดฌ์˜ ์กฐ๊ฑด, ์ „์ฒ˜๋ฆฌ ๊ณผ์ •์— ๋ฏผ๊ฐํ•จ  
- ๋ฐ์ดํ„ฐ ํŽธํ–ฅ์œผ๋กœ ์ธํ•ด ํŠน์ • ์ž‘๋ฌผ์ด๋‚˜ ๋ฐฐ๊ฒฝ์— ๊ณผ์ ํ•ฉ ๊ฐ€๋Šฅ์„ฑ ์กด์žฌ  
- ๋ชจ๋ธ ์˜ˆ์ธก์€ ๋ณด์กฐ์  ํŒ๋‹จ ์ž๋ฃŒ๋กœ ํ™œ์šฉํ•ด์•ผ ํ•˜๋ฉฐ, ์ตœ์ข… ์˜์‚ฌ๊ฒฐ์ •์€ ์ „๋ฌธ๊ฐ€ ํŒ๋‹จ๊ณผ ๋ณ‘ํ–‰ ํ•„์š”

## How to Get Started

```python
from transformers import AutoModelForImageClassification, AutoFeatureExtractor
import torch

# ๋ชจ๋ธ๊ณผ ํŠน์ง• ์ถ”์ถœ๊ธฐ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
model = AutoModelForImageClassification.from_pretrained("MhRnd/ConvNext_Multi")
extractor = AutoFeatureExtractor.from_pretrained("MhRnd/ConvNext_Multi")

# ๋‹ค์ค‘๋ฐด๋“œ ์ด๋ฏธ์ง€ ํ…์„œ (์˜ˆ: [batch_size, 5, H, W])
inputs = extractor(multi_band_images, return_tensors="pt")

# ๋ชจ๋ธ ์ถ”๋ก 
outputs = model(**inputs)
logits = outputs.logits
predicted_class = torch.argmax(logits, dim=1)
```

## Training Details

- **Training Data:**  
  - ๋“œ๋ก  ๋ฐ ์œ„์„ฑ ์ดฌ์˜ ๋‹ค์ค‘๋ถ„๊ด‘(5๋ฐด๋“œ) ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์…‹  
  - ๋ผ๋ฒจ: ์ฃผ์š” ์ž‘๋ฌผ ๋ฐ ์ƒ์œก ์ƒํƒœ ํด๋ž˜์Šค  
- **Training Procedure:**  
  - ํŒŒ์ธํŠœ๋‹: facebook/convnext-tiny-224 ๊ธฐ๋ฐ˜  
  - ์—ํญ์ˆ˜: 100  
  - ๋ฐฐ์น˜์‚ฌ์ด์ฆˆ: 32  
  - ์˜ตํ‹ฐ๋งˆ์ด์ €: AdamW  
  - ํ•™์Šต๋ฅ : 1e-05, Step ์Šค์ผ€์ค„๋Ÿฌ ์‚ฌ์šฉ  

## Evaluation

- **Testing Data:** ๋ณ„๋„ ๋ณด์œ ํ•œ ๊ฒ€์ฆ์šฉ ๋‹ค์ค‘๋ถ„๊ด‘ ์ด๋ฏธ์ง€์…‹  
- **Metrics:** ์ •ํ™•๋„(Accuracy), ์†์‹ค(Loss)
- **Performance:**  
  - **๋ฒ ์ŠคํŠธ ์„ฑ๋Šฅ (Epoch 46):**
    - ํ›ˆ๋ จ ์†์‹ค: 0.1036
    - ํ›ˆ๋ จ ์ •ํ™•๋„: 1.0000
    - ๊ฒ€์ฆ ์†์‹ค: 0.4031
    - ๊ฒ€์ฆ ์ •ํ™•๋„: 0.8966
  - **๋งˆ์ง€๋ง‰ ์—…๋ฐ์ดํŠธ:** 2025-09-08 02:35:46
  - **๋ฒ ์ŠคํŠธ ์„ฑ๋Šฅ (Epoch 41):**
    - ํ›ˆ๋ จ ์†์‹ค: 0.1238
    - ํ›ˆ๋ จ ์ •ํ™•๋„: 1.0000
    - ๊ฒ€์ฆ ์†์‹ค: 0.3569
    - ๊ฒ€์ฆ ์ •ํ™•๋„: 1.0000
  - **๋งˆ์ง€๋ง‰ ์—…๋ฐ์ดํŠธ:** 2025-08-27 08:36:14

## Environmental Impact

- **Hardware:** NVIDIA RTX 3090 GPU  
- **Training Duration:** ์•ฝ 15๋ถ„
  
## Citation
```
@article{liu2022convnext,  
  title={ConvNeXt: A ConvNet for the 2020s},  
  author={Liu, Zhuang and Mao, Han and Wu, Chao and Feichtenhofer, Christoph and Darrell, Trevor and Xie, Saining},  
  journal={arXiv preprint arXiv:2201.03545},  
  year={2022}  
}
```

## Glossary

- **๋‹ค์ค‘๋ถ„๊ด‘ ์˜์ƒ(Multispectral Imagery):** ์—ฌ๋Ÿฌ ํŒŒ์žฅ๋Œ€์˜ ๋น›์„ ๋ถ„๋ฆฌํ•˜์—ฌ ์ดฌ์˜ํ•œ ์˜์ƒ์œผ๋กœ, ์ž‘๋ฌผ์˜ ์ƒ์œก ์ƒํƒœ ๋ถ„์„ ๋“ฑ์— ํ™œ์šฉ๋จ  
- **ConvNeXt:** ํ˜„๋Œ€์ ์ธ ๊ตฌ์กฐ๋ฅผ ๊ฐ–์ถ˜ ์ปจ๋ณผ๋ฃจ์…˜ ์‹ ๊ฒฝ๋ง(CNN)  

## Model Card Authors

- AI Research Team, MuhanRnd 
- [email protected]