|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: microsoft/resnet-50 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: cat_dog_classifier_with_small_datasest |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.95 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# cat_dog_classifier_with_small_datasest |
|
|
|
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1369 |
|
- Accuracy: 0.95 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 4e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| No log | 1.0 | 70 | 0.5422 | 0.8571 | |
|
| No log | 2.0 | 140 | 0.5221 | 0.8786 | |
|
| No log | 3.0 | 210 | 0.4977 | 0.8571 | |
|
| No log | 4.0 | 280 | 0.4617 | 0.8786 | |
|
| No log | 5.0 | 350 | 0.3932 | 0.9143 | |
|
| No log | 6.0 | 420 | 0.3411 | 0.9143 | |
|
| No log | 7.0 | 490 | 0.2884 | 0.9143 | |
|
| 0.4971 | 8.0 | 560 | 0.2429 | 0.9286 | |
|
| 0.4971 | 9.0 | 630 | 0.2151 | 0.9429 | |
|
| 0.4971 | 10.0 | 700 | 0.1962 | 0.9286 | |
|
| 0.4971 | 11.0 | 770 | 0.1727 | 0.9357 | |
|
| 0.4971 | 12.0 | 840 | 0.1676 | 0.95 | |
|
| 0.4971 | 13.0 | 910 | 0.1764 | 0.9286 | |
|
| 0.4971 | 14.0 | 980 | 0.1565 | 0.9429 | |
|
| 0.2878 | 15.0 | 1050 | 0.1578 | 0.9429 | |
|
| 0.2878 | 16.0 | 1120 | 0.1577 | 0.9429 | |
|
| 0.2878 | 17.0 | 1190 | 0.1393 | 0.9429 | |
|
| 0.2878 | 18.0 | 1260 | 0.1472 | 0.9429 | |
|
| 0.2878 | 19.0 | 1330 | 0.1315 | 0.95 | |
|
| 0.2878 | 20.0 | 1400 | 0.1369 | 0.95 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.1 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|