NMP123's picture
End of training
19b77fc verified
metadata
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: w2v-bert-2.0-Vietnamese-colab-CV17.0
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: vi
          split: test
          args: vi
        metrics:
          - name: Wer
            type: wer
            value: 0.2728716645489199

w2v-bert-2.0-Vietnamese-colab-CV17.0

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0607
  • Wer: 0.2729

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.8799 3.2609 300 0.7434 0.3899
0.1626 6.5217 600 0.8157 0.3578
0.0823 9.7826 900 0.8759 0.3704
0.04 13.0435 1200 0.9129 0.3195
0.0169 16.3043 1500 0.9113 0.2904
0.0056 19.5652 1800 0.9906 0.2809
0.0016 22.8261 2100 1.0506 0.2848
0.0005 26.0870 2400 1.0502 0.2730
0.0002 29.3478 2700 1.0607 0.2729

Framework versions

  • Transformers 4.50.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1