Priyanka-Balivada's picture
bert-1-epoch-sentiment
99a3109
metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - tweet_eval
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: bert-1-epoch-sentiment
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: tweet_eval
          type: tweet_eval
          config: sentiment
          split: test
          args: sentiment
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6895962227287529
          - name: Precision
            type: precision
            value: 0.6932981822495374
          - name: Recall
            type: recall
            value: 0.6895962227287529

bert-1-epoch-sentiment

This model is a fine-tuned version of bert-base-uncased on the tweet_eval dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6998
  • Accuracy: 0.6896
  • Precision: 0.6933
  • Recall: 0.6896
  • Micro-avg-recall: 0.6896
  • Micro-avg-precision: 0.6896

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall Micro-avg-recall Micro-avg-precision
0.5756 1.0 2851 0.6998 0.6896 0.6933 0.6896 0.6896 0.6896

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.13.3