language:
- en
tags:
- ColBERT
- PyLate
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:443147
- loss:Distillation
base_model: artiwise-ai/modernbert-base-tr-uncased
datasets:
- Speedsy/msmarco-cleaned-gemini-bge-tr-uncased
pipeline_tag: sentence-similarity
library_name: PyLate
metrics:
- MaxSim_accuracy@1
- MaxSim_accuracy@3
- MaxSim_accuracy@5
- MaxSim_accuracy@10
- MaxSim_precision@1
- MaxSim_precision@3
- MaxSim_precision@5
- MaxSim_precision@10
- MaxSim_recall@1
- MaxSim_recall@3
- MaxSim_recall@5
- MaxSim_recall@10
- MaxSim_ndcg@10
- MaxSim_mrr@10
- MaxSim_map@100
model-index:
- name: PyLate model based on artiwise-ai/modernbert-base-tr-uncased
results:
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoDBPedia
type: NanoDBPedia
metrics:
- type: MaxSim_accuracy@1
value: 0.8
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.92
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.96
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 1
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.8
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.6733333333333333
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.6
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.548
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.08578717061354299
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.1830130267260073
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.2593375700877878
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.39135854315858964
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.6725979752170759
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.8711111111111113
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.5248067100703537
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoFiQA2018
type: NanoFiQA2018
metrics:
- type: MaxSim_accuracy@1
value: 0.46
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.68
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.72
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.72
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.46
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.3
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.22399999999999998
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.128
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.23257936507936505
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.4590714285714285
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.5128174603174602
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.5457063492063492
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.4798674129130085
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.5623333333333332
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.4143816306136937
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoHotpotQA
type: NanoHotpotQA
metrics:
- type: MaxSim_accuracy@1
value: 0.9
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 1
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 1
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 1
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.9
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.5133333333333333
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.32799999999999996
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.16799999999999998
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.45
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.77
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.82
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.84
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.8249212341756258
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.9466666666666668
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.7682039396944715
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: MaxSim_accuracy@1
value: 0.46
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.62
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.7
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.82
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.46
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.20666666666666667
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.14
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.08199999999999999
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.46
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.62
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.7
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.82
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.6299271879198127
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.5706666666666667
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.5763825115906536
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: MaxSim_accuracy@1
value: 0.58
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.68
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.78
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.82
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.58
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.2333333333333333
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.16399999999999998
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.088
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.57
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.67
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.75
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.8
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.6865185478036829
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.6540238095238096
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.6518842133610925
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoSCIDOCS
type: NanoSCIDOCS
metrics:
- type: MaxSim_accuracy@1
value: 0.42
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.6
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.64
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.8
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.42
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.2866666666666666
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.22399999999999998
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.158
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.08866666666666667
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.17766666666666667
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.2306666666666667
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.32466666666666666
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.3241741723269819
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.5367777777777778
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.24410449875234425
name: Maxsim Map@100
- task:
type: pylate-custom-nano-beir
name: Pylate Custom Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: MaxSim_accuracy@1
value: 0.6033333333333334
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.75
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.7999999999999999
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.8599999999999999
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.6033333333333334
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.3688888888888889
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.27999999999999997
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.19533333333333333
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.3145055337265958
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.4799585203273504
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.5454702828453192
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.6202885931719342
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.6030010883926978
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.6902632275132276
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.5299605840137683
name: Maxsim Map@100
PyLate model based on artiwise-ai/modernbert-base-tr-uncased
This is a PyLate model finetuned from artiwise-ai/modernbert-base-tr-uncased on the train dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.
Model Details
Model Description
- Model Type: PyLate model
- Base model: artiwise-ai/modernbert-base-tr-uncased
- Document Length: 180 tokens
- Query Length: 32 tokens
- Output Dimensionality: 128 tokens
- Similarity Function: MaxSim
- Training Dataset:
- Language: en
Model Sources
- Documentation: PyLate Documentation
- Repository: PyLate on GitHub
- Hugging Face: PyLate models on Hugging Face
Full Model Architecture
ColBERT(
(0): Transformer({'max_seq_length': 179, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Dense({'in_features': 768, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
Usage
First install the PyLate library:
pip install -U pylate
Retrieval
PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.
Indexing documents
First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:
from pylate import indexes, models, retrieve
# Step 1: Load the ColBERT model
model = models.ColBERT(
model_name_or_path=pylate_model_id,
)
# Step 2: Initialize the Voyager index
index = indexes.Voyager(
index_folder="pylate-index",
index_name="index",
override=True, # This overwrites the existing index if any
)
# Step 3: Encode the documents
documents_ids = ["1", "2", "3"]
documents = ["document 1 text", "document 2 text", "document 3 text"]
documents_embeddings = model.encode(
documents,
batch_size=32,
is_query=False, # Ensure that it is set to False to indicate that these are documents, not queries
show_progress_bar=True,
)
# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
index.add_documents(
documents_ids=documents_ids,
documents_embeddings=documents_embeddings,
)
Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:
# To load an index, simply instantiate it with the correct folder/name and without overriding it
index = indexes.Voyager(
index_folder="pylate-index",
index_name="index",
)
Retrieving top-k documents for queries
Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries. To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:
# Step 1: Initialize the ColBERT retriever
retriever = retrieve.ColBERT(index=index)
# Step 2: Encode the queries
queries_embeddings = model.encode(
["query for document 3", "query for document 1"],
batch_size=32,
is_query=True, # # Ensure that it is set to False to indicate that these are queries
show_progress_bar=True,
)
# Step 3: Retrieve top-k documents
scores = retriever.retrieve(
queries_embeddings=queries_embeddings,
k=10, # Retrieve the top 10 matches for each query
)
Reranking
If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:
from pylate import rank, models
queries = [
"query A",
"query B",
]
documents = [
["document A", "document B"],
["document 1", "document C", "document B"],
]
documents_ids = [
[1, 2],
[1, 3, 2],
]
model = models.ColBERT(
model_name_or_path=pylate_model_id,
)
queries_embeddings = model.encode(
queries,
is_query=True,
)
documents_embeddings = model.encode(
documents,
is_query=False,
)
reranked_documents = rank.rerank(
documents_ids=documents_ids,
queries_embeddings=queries_embeddings,
documents_embeddings=documents_embeddings,
)
Evaluation
Metrics
Py Late Information Retrieval
- Dataset:
['NanoDBPedia', 'NanoFiQA2018', 'NanoHotpotQA', 'NanoMSMARCO', 'NanoNQ', 'NanoSCIDOCS']
- Evaluated with
pylate.evaluation.pylate_information_retrieval_evaluator.PyLateInformationRetrievalEvaluator
Metric | NanoDBPedia | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNQ | NanoSCIDOCS |
---|---|---|---|---|---|---|
MaxSim_accuracy@1 | 0.8 | 0.46 | 0.9 | 0.46 | 0.58 | 0.42 |
MaxSim_accuracy@3 | 0.92 | 0.68 | 1.0 | 0.62 | 0.68 | 0.6 |
MaxSim_accuracy@5 | 0.96 | 0.72 | 1.0 | 0.7 | 0.78 | 0.64 |
MaxSim_accuracy@10 | 1.0 | 0.72 | 1.0 | 0.82 | 0.82 | 0.8 |
MaxSim_precision@1 | 0.8 | 0.46 | 0.9 | 0.46 | 0.58 | 0.42 |
MaxSim_precision@3 | 0.6733 | 0.3 | 0.5133 | 0.2067 | 0.2333 | 0.2867 |
MaxSim_precision@5 | 0.6 | 0.224 | 0.328 | 0.14 | 0.164 | 0.224 |
MaxSim_precision@10 | 0.548 | 0.128 | 0.168 | 0.082 | 0.088 | 0.158 |
MaxSim_recall@1 | 0.0858 | 0.2326 | 0.45 | 0.46 | 0.57 | 0.0887 |
MaxSim_recall@3 | 0.183 | 0.4591 | 0.77 | 0.62 | 0.67 | 0.1777 |
MaxSim_recall@5 | 0.2593 | 0.5128 | 0.82 | 0.7 | 0.75 | 0.2307 |
MaxSim_recall@10 | 0.3914 | 0.5457 | 0.84 | 0.82 | 0.8 | 0.3247 |
MaxSim_ndcg@10 | 0.6726 | 0.4799 | 0.8249 | 0.6299 | 0.6865 | 0.3242 |
MaxSim_mrr@10 | 0.8711 | 0.5623 | 0.9467 | 0.5707 | 0.654 | 0.5368 |
MaxSim_map@100 | 0.5248 | 0.4144 | 0.7682 | 0.5764 | 0.6519 | 0.2441 |
Pylate Custom Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
pylate_nano_beir_evaluator.PylateCustomNanoBEIREvaluator
Metric | Value |
---|---|
MaxSim_accuracy@1 | 0.6033 |
MaxSim_accuracy@3 | 0.75 |
MaxSim_accuracy@5 | 0.8 |
MaxSim_accuracy@10 | 0.86 |
MaxSim_precision@1 | 0.6033 |
MaxSim_precision@3 | 0.3689 |
MaxSim_precision@5 | 0.28 |
MaxSim_precision@10 | 0.1953 |
MaxSim_recall@1 | 0.3145 |
MaxSim_recall@3 | 0.48 |
MaxSim_recall@5 | 0.5455 |
MaxSim_recall@10 | 0.6203 |
MaxSim_ndcg@10 | 0.603 |
MaxSim_mrr@10 | 0.6903 |
MaxSim_map@100 | 0.53 |
Training Details
Training Dataset
train
- Dataset: train at bd034f5
- Size: 443,147 training samples
- Columns:
query_id
,document_ids
, andscores
- Approximate statistics based on the first 1000 samples:
query_id document_ids scores type string list list details - min: 5 tokens
- mean: 6.21 tokens
- max: 8 tokens
- size: 32 elements
- size: 32 elements
- Samples:
query_id document_ids scores 817836
['2716076', '6741935', '2681109', '5562684', '3507339', ...]
[1.0, 0.7059561610221863, 0.21702419221401215, 0.38270196318626404, 0.20812414586544037, ...]
1045170
['5088671', '2953295', '8783471', '4268439', '6339935', ...]
[1.0, 0.6493034362792969, 0.0692221149802208, 0.17963139712810516, 0.6697239875793457, ...]
1069432
['3724008', '314949', '8657336', '7420456', '879004', ...]
[1.0, 0.3706032931804657, 0.3508036434650421, 0.2823200523853302, 0.17563475668430328, ...]
- Loss:
pylate.losses.distillation.Distillation
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsgradient_accumulation_steps
: 2learning_rate
: 3e-05num_train_epochs
: 1bf16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 3e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | NanoDBPedia_MaxSim_ndcg@10 | NanoFiQA2018_MaxSim_ndcg@10 | NanoHotpotQA_MaxSim_ndcg@10 | NanoMSMARCO_MaxSim_ndcg@10 | NanoNQ_MaxSim_ndcg@10 | NanoSCIDOCS_MaxSim_ndcg@10 | NanoBEIR_mean_MaxSim_ndcg@10 |
---|---|---|---|---|---|---|---|---|---|
0.0036 | 100 | 0.0649 | - | - | - | - | - | - | - |
0.0072 | 200 | 0.0559 | - | - | - | - | - | - | - |
0.0108 | 300 | 0.0518 | - | - | - | - | - | - | - |
0.0144 | 400 | 0.051 | - | - | - | - | - | - | - |
0.0181 | 500 | 0.0492 | 0.6421 | 0.3808 | 0.7993 | 0.5565 | 0.5826 | 0.3050 | 0.5444 |
0.0217 | 600 | 0.0467 | - | - | - | - | - | - | - |
0.0253 | 700 | 0.0451 | - | - | - | - | - | - | - |
0.0289 | 800 | 0.0443 | - | - | - | - | - | - | - |
0.0325 | 900 | 0.0443 | - | - | - | - | - | - | - |
0.0361 | 1000 | 0.0437 | 0.6449 | 0.4015 | 0.8003 | 0.5437 | 0.6092 | 0.3134 | 0.5522 |
0.0397 | 1100 | 0.0433 | - | - | - | - | - | - | - |
0.0433 | 1200 | 0.0427 | - | - | - | - | - | - | - |
0.0469 | 1300 | 0.0414 | - | - | - | - | - | - | - |
0.0505 | 1400 | 0.0417 | - | - | - | - | - | - | - |
0.0542 | 1500 | 0.0418 | 0.6412 | 0.4285 | 0.8154 | 0.5866 | 0.6181 | 0.3219 | 0.5686 |
0.0578 | 1600 | 0.0404 | - | - | - | - | - | - | - |
0.0614 | 1700 | 0.0417 | - | - | - | - | - | - | - |
0.0650 | 1800 | 0.0407 | - | - | - | - | - | - | - |
0.0686 | 1900 | 0.0398 | - | - | - | - | - | - | - |
0.0722 | 2000 | 0.0401 | 0.6499 | 0.4354 | 0.8150 | 0.5610 | 0.6445 | 0.3152 | 0.5702 |
0.0758 | 2100 | 0.0404 | - | - | - | - | - | - | - |
0.0794 | 2200 | 0.0395 | - | - | - | - | - | - | - |
0.0830 | 2300 | 0.0404 | - | - | - | - | - | - | - |
0.0867 | 2400 | 0.0393 | - | - | - | - | - | - | - |
0.0903 | 2500 | 0.0387 | 0.6571 | 0.4435 | 0.8112 | 0.5786 | 0.6809 | 0.3232 | 0.5824 |
0.0939 | 2600 | 0.0397 | - | - | - | - | - | - | - |
0.0975 | 2700 | 0.0393 | - | - | - | - | - | - | - |
0.1011 | 2800 | 0.0384 | - | - | - | - | - | - | - |
0.1047 | 2900 | 0.0382 | - | - | - | - | - | - | - |
0.1083 | 3000 | 0.0381 | 0.6437 | 0.4751 | 0.8175 | 0.5711 | 0.6422 | 0.3203 | 0.5783 |
0.1119 | 3100 | 0.0382 | - | - | - | - | - | - | - |
0.1155 | 3200 | 0.0381 | - | - | - | - | - | - | - |
0.1191 | 3300 | 0.0385 | - | - | - | - | - | - | - |
0.1228 | 3400 | 0.0374 | - | - | - | - | - | - | - |
0.1264 | 3500 | 0.0382 | 0.6437 | 0.4833 | 0.8282 | 0.5955 | 0.6436 | 0.3190 | 0.5856 |
0.1300 | 3600 | 0.0365 | - | - | - | - | - | - | - |
0.1336 | 3700 | 0.0379 | - | - | - | - | - | - | - |
0.1372 | 3800 | 0.0376 | - | - | - | - | - | - | - |
0.1408 | 3900 | 0.0376 | - | - | - | - | - | - | - |
0.1444 | 4000 | 0.0378 | 0.6511 | 0.4760 | 0.8151 | 0.5806 | 0.6874 | 0.3140 | 0.5874 |
0.1480 | 4100 | 0.0365 | - | - | - | - | - | - | - |
0.1516 | 4200 | 0.0362 | - | - | - | - | - | - | - |
0.1553 | 4300 | 0.0374 | - | - | - | - | - | - | - |
0.1589 | 4400 | 0.0359 | - | - | - | - | - | - | - |
0.1625 | 4500 | 0.0368 | 0.6530 | 0.4458 | 0.8122 | 0.6101 | 0.6896 | 0.3174 | 0.5880 |
0.1661 | 4600 | 0.0356 | - | - | - | - | - | - | - |
0.1697 | 4700 | 0.0364 | - | - | - | - | - | - | - |
0.1733 | 4800 | 0.0352 | - | - | - | - | - | - | - |
0.1769 | 4900 | 0.0357 | - | - | - | - | - | - | - |
0.1805 | 5000 | 0.0366 | 0.6611 | 0.4680 | 0.8152 | 0.6260 | 0.6715 | 0.3252 | 0.5945 |
0.1841 | 5100 | 0.0358 | - | - | - | - | - | - | - |
0.1877 | 5200 | 0.0366 | - | - | - | - | - | - | - |
0.1914 | 5300 | 0.0348 | - | - | - | - | - | - | - |
0.1950 | 5400 | 0.036 | - | - | - | - | - | - | - |
0.1986 | 5500 | 0.0337 | 0.6595 | 0.4823 | 0.8162 | 0.6241 | 0.6620 | 0.3216 | 0.5943 |
0.2022 | 5600 | 0.0347 | - | - | - | - | - | - | - |
0.2058 | 5700 | 0.0361 | - | - | - | - | - | - | - |
0.2094 | 5800 | 0.0356 | - | - | - | - | - | - | - |
0.2130 | 5900 | 0.0359 | - | - | - | - | - | - | - |
0.2166 | 6000 | 0.0359 | 0.6560 | 0.4820 | 0.8121 | 0.6457 | 0.6587 | 0.3181 | 0.5954 |
0.2202 | 6100 | 0.0347 | - | - | - | - | - | - | - |
0.2239 | 6200 | 0.0355 | - | - | - | - | - | - | - |
0.2275 | 6300 | 0.0356 | - | - | - | - | - | - | - |
0.2311 | 6400 | 0.0351 | - | - | - | - | - | - | - |
0.2347 | 6500 | 0.0351 | 0.6650 | 0.4658 | 0.8291 | 0.6167 | 0.6742 | 0.3146 | 0.5942 |
0.2383 | 6600 | 0.0361 | - | - | - | - | - | - | - |
0.2419 | 6700 | 0.0352 | - | - | - | - | - | - | - |
0.2455 | 6800 | 0.0358 | - | - | - | - | - | - | - |
0.2491 | 6900 | 0.0339 | - | - | - | - | - | - | - |
0.2527 | 7000 | 0.0345 | 0.6600 | 0.4700 | 0.8413 | 0.6449 | 0.6862 | 0.3163 | 0.6031 |
0.2563 | 7100 | 0.0347 | - | - | - | - | - | - | - |
0.2600 | 7200 | 0.0346 | - | - | - | - | - | - | - |
0.2636 | 7300 | 0.0342 | - | - | - | - | - | - | - |
0.2672 | 7400 | 0.0346 | - | - | - | - | - | - | - |
0.2708 | 7500 | 0.0339 | 0.6583 | 0.4792 | 0.8295 | 0.6257 | 0.6788 | 0.3204 | 0.5986 |
0.2744 | 7600 | 0.0344 | - | - | - | - | - | - | - |
0.2780 | 7700 | 0.0323 | - | - | - | - | - | - | - |
0.2816 | 7800 | 0.0333 | - | - | - | - | - | - | - |
0.2852 | 7900 | 0.0334 | - | - | - | - | - | - | - |
0.2888 | 8000 | 0.0333 | 0.6633 | 0.4660 | 0.8257 | 0.6251 | 0.6847 | 0.3229 | 0.5979 |
0.2925 | 8100 | 0.0337 | - | - | - | - | - | - | - |
0.2961 | 8200 | 0.0339 | - | - | - | - | - | - | - |
0.2997 | 8300 | 0.0332 | - | - | - | - | - | - | - |
0.3033 | 8400 | 0.0334 | - | - | - | - | - | - | - |
0.3069 | 8500 | 0.0334 | 0.6744 | 0.4791 | 0.8204 | 0.6139 | 0.6654 | 0.3130 | 0.5944 |
0.3105 | 8600 | 0.032 | - | - | - | - | - | - | - |
0.3141 | 8700 | 0.0342 | - | - | - | - | - | - | - |
0.3177 | 8800 | 0.0337 | - | - | - | - | - | - | - |
0.3213 | 8900 | 0.0343 | - | - | - | - | - | - | - |
0.3249 | 9000 | 0.0342 | 0.6643 | 0.4395 | 0.8270 | 0.6252 | 0.6828 | 0.3146 | 0.5922 |
0.3286 | 9100 | 0.0332 | - | - | - | - | - | - | - |
0.3322 | 9200 | 0.0337 | - | - | - | - | - | - | - |
0.3358 | 9300 | 0.033 | - | - | - | - | - | - | - |
0.3394 | 9400 | 0.0327 | - | - | - | - | - | - | - |
0.3430 | 9500 | 0.0332 | 0.6676 | 0.4530 | 0.8400 | 0.6220 | 0.6753 | 0.3139 | 0.5953 |
0.3466 | 9600 | 0.0315 | - | - | - | - | - | - | - |
0.3502 | 9700 | 0.033 | - | - | - | - | - | - | - |
0.3538 | 9800 | 0.0331 | - | - | - | - | - | - | - |
0.3574 | 9900 | 0.0341 | - | - | - | - | - | - | - |
0.3610 | 10000 | 0.0327 | 0.6602 | 0.4887 | 0.8308 | 0.6267 | 0.6806 | 0.3241 | 0.6018 |
0.3647 | 10100 | 0.0338 | - | - | - | - | - | - | - |
0.3683 | 10200 | 0.0327 | - | - | - | - | - | - | - |
0.3719 | 10300 | 0.0325 | - | - | - | - | - | - | - |
0.3755 | 10400 | 0.0342 | - | - | - | - | - | - | - |
0.3791 | 10500 | 0.034 | 0.6659 | 0.4723 | 0.8313 | 0.6156 | 0.6803 | 0.3240 | 0.5982 |
0.3827 | 10600 | 0.0323 | - | - | - | - | - | - | - |
0.3863 | 10700 | 0.0329 | - | - | - | - | - | - | - |
0.3899 | 10800 | 0.0328 | - | - | - | - | - | - | - |
0.3935 | 10900 | 0.0324 | - | - | - | - | - | - | - |
0.3972 | 11000 | 0.0321 | 0.6628 | 0.4937 | 0.8340 | 0.6373 | 0.6945 | 0.3268 | 0.6082 |
0.4008 | 11100 | 0.0329 | - | - | - | - | - | - | - |
0.4044 | 11200 | 0.0329 | - | - | - | - | - | - | - |
0.4080 | 11300 | 0.0325 | - | - | - | - | - | - | - |
0.4116 | 11400 | 0.0321 | - | - | - | - | - | - | - |
0.4152 | 11500 | 0.0325 | 0.6617 | 0.4698 | 0.8419 | 0.6231 | 0.6853 | 0.3191 | 0.6002 |
0.4188 | 11600 | 0.0327 | - | - | - | - | - | - | - |
0.4224 | 11700 | 0.0327 | - | - | - | - | - | - | - |
0.4260 | 11800 | 0.0326 | - | - | - | - | - | - | - |
0.4296 | 11900 | 0.0329 | - | - | - | - | - | - | - |
0.4333 | 12000 | 0.0332 | 0.6559 | 0.4860 | 0.8324 | 0.6160 | 0.6966 | 0.3219 | 0.6015 |
0.4369 | 12100 | 0.0323 | - | - | - | - | - | - | - |
0.4405 | 12200 | 0.0327 | - | - | - | - | - | - | - |
0.4441 | 12300 | 0.0321 | - | - | - | - | - | - | - |
0.4477 | 12400 | 0.0321 | - | - | - | - | - | - | - |
0.4513 | 12500 | 0.0319 | 0.6630 | 0.4877 | 0.8310 | 0.6197 | 0.6943 | 0.3296 | 0.6042 |
0.4549 | 12600 | 0.0326 | - | - | - | - | - | - | - |
0.4585 | 12700 | 0.032 | - | - | - | - | - | - | - |
0.4621 | 12800 | 0.032 | - | - | - | - | - | - | - |
0.4658 | 12900 | 0.0302 | - | - | - | - | - | - | - |
0.4694 | 13000 | 0.0311 | 0.6687 | 0.4726 | 0.8305 | 0.6191 | 0.6929 | 0.3233 | 0.6012 |
0.4730 | 13100 | 0.0321 | - | - | - | - | - | - | - |
0.4766 | 13200 | 0.0318 | - | - | - | - | - | - | - |
0.4802 | 13300 | 0.032 | - | - | - | - | - | - | - |
0.4838 | 13400 | 0.0315 | - | - | - | - | - | - | - |
0.4874 | 13500 | 0.0317 | 0.6628 | 0.4781 | 0.8257 | 0.6153 | 0.6795 | 0.3172 | 0.5964 |
0.4910 | 13600 | 0.0316 | - | - | - | - | - | - | - |
0.4946 | 13700 | 0.0335 | - | - | - | - | - | - | - |
0.4982 | 13800 | 0.0313 | - | - | - | - | - | - | - |
0.5019 | 13900 | 0.0317 | - | - | - | - | - | - | - |
0.5055 | 14000 | 0.0321 | 0.6579 | 0.4676 | 0.8351 | 0.6088 | 0.6774 | 0.3211 | 0.5946 |
0.5091 | 14100 | 0.0318 | - | - | - | - | - | - | - |
0.5127 | 14200 | 0.0328 | - | - | - | - | - | - | - |
0.5163 | 14300 | 0.0307 | - | - | - | - | - | - | - |
0.5199 | 14400 | 0.0326 | - | - | - | - | - | - | - |
0.5235 | 14500 | 0.0322 | 0.6558 | 0.5042 | 0.8344 | 0.6093 | 0.6963 | 0.3244 | 0.6041 |
0.5271 | 14600 | 0.0321 | - | - | - | - | - | - | - |
0.5307 | 14700 | 0.0308 | - | - | - | - | - | - | - |
0.5344 | 14800 | 0.0315 | - | - | - | - | - | - | - |
0.5380 | 14900 | 0.0324 | - | - | - | - | - | - | - |
0.5416 | 15000 | 0.0305 | 0.6598 | 0.4898 | 0.8402 | 0.6081 | 0.6945 | 0.3207 | 0.6022 |
0.5452 | 15100 | 0.0324 | - | - | - | - | - | - | - |
0.5488 | 15200 | 0.0315 | - | - | - | - | - | - | - |
0.5524 | 15300 | 0.0311 | - | - | - | - | - | - | - |
0.5560 | 15400 | 0.0317 | - | - | - | - | - | - | - |
0.5596 | 15500 | 0.0309 | 0.6541 | 0.4770 | 0.8309 | 0.6234 | 0.6946 | 0.3282 | 0.6014 |
0.5632 | 15600 | 0.0322 | - | - | - | - | - | - | - |
0.5668 | 15700 | 0.0314 | - | - | - | - | - | - | - |
0.5705 | 15800 | 0.0312 | - | - | - | - | - | - | - |
0.5741 | 15900 | 0.0301 | - | - | - | - | - | - | - |
0.5777 | 16000 | 0.0316 | 0.6699 | 0.4869 | 0.8348 | 0.6061 | 0.7020 | 0.3182 | 0.6030 |
0.5813 | 16100 | 0.0309 | - | - | - | - | - | - | - |
0.5849 | 16200 | 0.0297 | - | - | - | - | - | - | - |
0.5885 | 16300 | 0.0319 | - | - | - | - | - | - | - |
0.5921 | 16400 | 0.0305 | - | - | - | - | - | - | - |
0.5957 | 16500 | 0.0309 | 0.6725 | 0.4863 | 0.8270 | 0.6131 | 0.6957 | 0.3254 | 0.6033 |
0.5993 | 16600 | 0.0312 | - | - | - | - | - | - | - |
0.6030 | 16700 | 0.0305 | - | - | - | - | - | - | - |
0.6066 | 16800 | 0.0306 | - | - | - | - | - | - | - |
0.6102 | 16900 | 0.0314 | - | - | - | - | - | - | - |
0.6138 | 17000 | 0.0308 | 0.6720 | 0.4886 | 0.8269 | 0.6115 | 0.6809 | 0.3239 | 0.6006 |
0.6174 | 17100 | 0.0307 | - | - | - | - | - | - | - |
0.6210 | 17200 | 0.03 | - | - | - | - | - | - | - |
0.6246 | 17300 | 0.0315 | - | - | - | - | - | - | - |
0.6282 | 17400 | 0.0304 | - | - | - | - | - | - | - |
0.6318 | 17500 | 0.0313 | 0.6646 | 0.4817 | 0.8216 | 0.6176 | 0.6967 | 0.3257 | 0.6013 |
0.6354 | 17600 | 0.03 | - | - | - | - | - | - | - |
0.6391 | 17700 | 0.0323 | - | - | - | - | - | - | - |
0.6427 | 17800 | 0.0311 | - | - | - | - | - | - | - |
0.6463 | 17900 | 0.0295 | - | - | - | - | - | - | - |
0.6499 | 18000 | 0.0307 | 0.6726 | 0.4799 | 0.8249 | 0.6299 | 0.6865 | 0.3242 | 0.6030 |
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.0.2
- PyLate: 1.2.0
- Transformers: 4.48.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084"
}
PyLate
@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, Raphaël},
url={https://github.com/lightonai/pylate},
year={2024}
}