alexandroputra's picture
Model save
7d4249a verified
metadata
library_name: transformers
license: other
base_model: google/medsiglip-448
tags:
  - generated_from_trainer
model-index:
  - name: medsiglip-448-ft-tb-screening
    results: []

medsiglip-448-ft-tb-screening

This model is a fine-tuned version of google/medsiglip-448 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6822

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
3.5064 0.2140 25 2.4667
1.9406 0.4280 50 2.5449
1.9175 0.6421 75 2.5669
1.8659 0.8561 100 2.7958
1.9603 1.0685 125 2.6281
1.8811 1.2825 150 2.5601
1.8955 1.4965 175 2.5833
1.8982 1.7105 200 2.6373
1.825 1.9246 225 2.6426
1.88 2.1370 250 2.8641
1.851 2.3510 275 2.6415
1.8619 2.5650 300 2.5749
1.8365 2.7790 325 2.6245
1.8783 2.9930 350 2.5929
1.8693 3.2055 375 2.5986
1.8605 3.4195 400 2.6601
1.8759 3.6335 425 2.5904
1.8731 3.8475 450 2.6054
1.8536 4.0599 475 2.6441
1.8509 4.2739 500 2.6678
1.8609 4.4880 525 2.6946
1.8478 4.7020 550 2.6386
1.8492 4.9160 575 2.6799
1.8549 5.1284 600 2.6355
1.88 5.3424 625 2.7021
1.8569 5.5564 650 2.6380
1.862 5.7705 675 2.6349
1.8486 5.9845 700 2.6843
1.8503 6.1969 725 2.6926
1.8503 6.4109 750 2.6962
1.84 6.6249 775 2.6286
1.8466 6.8390 800 2.6278
1.8584 7.0514 825 2.6274
1.8633 7.2654 850 2.6308
1.8744 7.4794 875 2.6365
1.8522 7.6934 900 2.6514
1.8578 7.9074 925 2.6701
1.8661 8.1199 950 2.6817
1.8301 8.3339 975 2.6813
1.8499 8.5479 1000 2.6841
1.8484 8.7619 1025 2.6832
1.8815 8.9759 1050 2.6814
1.8082 9.1883 1075 2.6836
1.8302 9.4024 1100 2.6839
1.8822 9.6164 1125 2.6824
1.8648 9.8304 1150 2.6822

Framework versions

  • Transformers 4.56.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.0.0
  • Tokenizers 0.22.0