Datasets:
File size: 5,650 Bytes
70c896a 5b03f11 70c896a 3119764 6e2e088 3119764 6e2e088 3119764 6e2e088 3119764 6e2e088 3119764 6e2e088 3119764 6e2e088 3119764 6e2e088 3119764 6e2e088 3119764 6e2e088 3119764 feae76c b1eb5a6 feae76c b1eb5a6 feae76c b1eb5a6 feae76c b1eb5a6 feae76c 3119764 6e2e088 3119764 6e2e088 3119764 649b256 6e2e088 3119764 6e2e088 649b256 6e2e088 3119764 6e2e088 70c896a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
---
dataset_name: "hlo-feature-dataset"
pretty_name: "HLO Feature Dataset for Deep Learning Resource Estimation"
dataset_type: "graph-and-tabular"
license: "apache-2.0"
task_categories:
- graph-ml
- tabular-regression
language: "en"
tags:
- HPC
- resource-prediction
- XLA
- compiler-features
- deep-learning
- graph-learning
- scheduling
size_categories:
- 1K<n<10K
source_datasets:
- custom
dataset_summary: >
The HLO Feature Dataset contains High-Level Optimizer (HLO) graph features and metadata extracted
from deep learning training workloads. It is designed for tasks such as runtime prediction, resource
estimation, and graph-based machine learning in HPC environments.
Each entry pairs model configuration metadata with compiler graph data stored in `.npz` format.
Ideal for ML system optimization studies, GNN research, and AI workload scheduling.
structured_data:
features:
- name: "batch"
type: "integer"
- name: "epochs"
type: "integer"
- name: "learn_rate"
type: "float"
- name: "gpu_core_count"
type: "integer"
- name: "gpu_memory_size"
type: "integer"
- name: "fit_time"
type: "float"
- name: "npz_path"
type: "string"
graph_data:
node_features: "node_feat"
edge_index: "edge_index"
additional_keys:
- "node_opcode"
- "node_config_ids"
- "node_splits"
usage_example: |
```python
from datasets import load_dataset
import numpy as np
dataset = load_dataset("your-username/hlo-feature-dataset")
sample = dataset['train'][0]
graph_data = np.load(sample['npz_path'])
node_features = graph_data['node_feat']
edges = graph_data['edge_index']
---
# HLO Feature Dataset for Deep Learning Resource Estimation
[](https://huggingface.co/datasets/your-username/hlo-feature-dataset)
## Dataset Summary
The **HLO Feature Dataset** is a collection of compiler-level graph features (HLO graphs) extracted from deep learning training workloads. Alongside detailed metadata (model configs, GPU stats), this dataset enables machine learning approaches for:
- ⏱️ **Training Time Prediction**
- 📉 **Resource Consumption Estimation**
- ⚡ **HPC and GPU Scheduling Optimization**
- 🧩 **Graph-based Neural Architecture Analysis**
This dataset is ideal for experimenting with regression models (e.g., XGBoost) and Graph Neural Networks (GNNs) using compiler features.
---
## Supported Tasks
- **⚙️ Runtime & Resource Prediction**: Predict training time (`fit_time`) based on HLO features.
- **📊 ML for Systems Optimization**: Use tabular + graph data for AI workload management.
- **🔗 Graph Representation Learning**: Apply GNNs on HLO graphs (`node_feat`, `edge_index`).
---
## Dataset Structure
Each entry includes:
- **Metadata**: From `dataset-new.csv` (model, optimizer, GPU specs, timing metrics, etc.)
- **HLO Graph Features**: `.npz` files containing:
- `node_opcode`, `node_feat`, `edge_index`, `node_config_ids`, `node_splits`
---
## Usage Example
This example demonstrates how to load metadata, preprocess features, and train an XGBoost model to predict training time (`fit_time`), as shown in the Colab notebook.
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from xgboost import XGBRegressor
# Load metadata CSV
df = pd.read_csv('dataset-new.csv')
# Example feature selection (drop non-numeric/categorical handling needed)
X = df[['batch', 'epochs', 'learn_rate', 'gpu_core_count', 'gpu_memory_size']]
y = df['fit_time']
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Initialize XGBoost Regressor
xgb_model = XGBRegressor(n_estimators=100, learning_rate=0.1, max_depth=6, random_state=42)
xgb_model.fit(X_train, y_train)
# Evaluate
preds = xgb_model.predict(X_test)
rmse = mean_squared_error(y_test, preds, squared=False)
print(f"RMSE: {rmse}")
```
---
### Example Notebooks
#### 🚀 Baseline: XGBoost for Resource Estimation
A sample baseline implementation using **XGBoost** is provided to demonstrate how to predict resource metrics such as `fit_time` using the dataset's metadata.
📥 **Download the notebook** from the repository:
[Baseline_XGBoost_Resource_Estimation.ipynb](https://huggingface.co/datasets/ICICLE-AI/ResourceEstimation_HLOGenCNN/blob/main/Baseline_XGBoost_Resource_Estimation.ipynb)
This notebook covers:
- Loading and preprocessing metadata from `dataset-new.csv`
- Training an XGBoost regressor to predict training time
- Evaluating model performance (e.g., RMSE)
> ⚡ **Note:** Make sure to adjust paths if cloning the dataset locally or integrating with Hugging Face `datasets` API.
---
### Loading HLO Graph Features
For graph-based ML tasks, load the `.npz` files:
```python
npz_file = df.iloc[0]['npz_path']
graph_data = np.load(npz_file)
node_features = graph_data['node_feat']
edges = graph_data['edge_index']
print("Node Feature Shape:", node_features.shape)
print("Edge Index Shape:", edges.shape)
```
---
<!-- ## Citation
If you use this dataset, please cite:
```
@misc{hlofeatures2025,
title={HLO Feature Dataset for AI Resource Estimation},
author={Your Name},
year={2025},
url={https://huggingface.co/datasets/your-username/hlo-feature-dataset}
} -->
```
---
## License
Specify your license here (e.g., MIT, Apache-2.0).
---
## Contributions
Open to contributions! Feel free to suggest improvements or share your models trained on this dataset. |