license: cc-by-4.0
language:
- en
size_categories:
- 100K<n<1M
pretty_name: Causal3D
tags:
- Causality
- Computer_Vision
dataset_info:
- config_name: hypothetical_scenes_Hypothetic_v2_linear
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2197142
num_examples: 14368
download_size: 0
dataset_size: 2197142
- config_name: hypothetical_scenes_Hypothetic_v2_nonlinear
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 1809956
num_examples: 10000
download_size: 0
dataset_size: 1809956
- config_name: hypothetical_scenes_Hypothetic_v3_fully_connected_linear
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 1397093
num_examples: 10000
download_size: 0
dataset_size: 1397093
- config_name: hypothetical_scenes_Hypothetic_v4_linear_full_connected
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 1699598
num_examples: 10050
download_size: 0
dataset_size: 1699598
- config_name: hypothetical_scenes_Hypothetic_v4_linear_v
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2053379
num_examples: 10000
download_size: 0
dataset_size: 2053379
- config_name: hypothetical_scenes_Hypothetic_v4_nonlinear_v
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2828217
num_examples: 10000
download_size: 0
dataset_size: 2828217
- config_name: hypothetical_scenes_Hypothetic_v5_linear
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 1956461
num_examples: 10000
download_size: 0
dataset_size: 1956461
- config_name: hypothetical_scenes_Hypothetic_v5_linear_full_connected
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 1955921
num_examples: 10000
download_size: 0
dataset_size: 1955921
- config_name: hypothetical_scenes_rendered_h3_linear_128P
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 5425498
num_examples: 15000
download_size: 0
dataset_size: 5425498
- config_name: hypothetical_scenes_rendered_h3_nonlinear_128P
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 3239120
num_examples: 10223
download_size: 0
dataset_size: 3239120
- config_name: hypothetical_scenes_rendered_h5_nonlinear
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 5459126
num_examples: 10360
download_size: 0
dataset_size: 5459126
- config_name: real_scenes_Real_Parabola
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 1323548
num_examples: 10000
download_size: 0
dataset_size: 1323548
- config_name: real_scenes_Real_magnet_v3
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 28397
num_examples: 481
download_size: 0
dataset_size: 28397
- config_name: real_scenes_Real_magnet_v3_5
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 93977
num_examples: 1503
download_size: 0
dataset_size: 93977
- config_name: real_scenes_Real_parabola_multi_view
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 0
num_examples: 0
download_size: 0
dataset_size: 0
- config_name: real_scenes_Real_spring_v3_256P
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 136325
num_examples: 450
download_size: 0
dataset_size: 136325
- config_name: real_scenes_Water_flow_scene_render
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2792618
num_examples: 10000
download_size: 0
dataset_size: 2792618
- config_name: real_scenes_convex_len_render_images
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 72448
num_examples: 1078
download_size: 0
dataset_size: 72448
- config_name: real_scenes_real_pendulum
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2925963
num_examples: 9999
download_size: 0
dataset_size: 2925963
- config_name: real_scenes_rendered_magnetic_128
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2324526
num_examples: 8350
download_size: 0
dataset_size: 2324526
- config_name: real_scenes_rendered_reflection_128P
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2765222
num_examples: 9995
download_size: 0
dataset_size: 2765222
- config_name: real_scenes_seesaw_scene_128P
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2275814
num_examples: 10000
download_size: 0
dataset_size: 2275814
- config_name: real_scenes_spring_scene_128P
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2547386
num_examples: 10000
download_size: 0
dataset_size: 2547386
π§ Causal3D: A Benchmark for Visual Causal Reasoning
Causal3D is a comprehensive benchmark designed to evaluate modelsβ abilities to uncover latent causal relations from structured and visual data. This dataset integrates 3D-rendered scenes with tabular causal annotations, providing a unified testbed for advancing causal discovery, causal representation learning, and causal reasoning with vision-language models (VLMs) and large language models (LLMs).
π Usage
πΉ Option 1: Load from Hugging Face
You can easily load a specific scene using the Hugging Face datasets
library:
from datasets import load_dataset
dataset = load_dataset(
"LLDDSS/Causal3D",
name="real_scenes_Real_Parabola",
download_mode="force_redownload", # Optional: force re-download
trust_remote_code=True # Required for custom dataset loading
)
print(dataset)
πΉ Option 2: Download via Kaggle + Croissant
import mlcroissant as mlc
import pandas as pd
# Load the dataset metadata from Kaggle
croissant_dataset = mlc.Dataset(
"https://www.kaggle.com/datasets/dsliu0011/causal3d-image-dataset/croissant/download"
)
# List available record sets
record_sets = croissant_dataset.metadata.record_sets
print(record_sets)
# Load records from the first record set
df = pd.DataFrame(croissant_dataset.records(record_set=record_sets[0].uuid))
print(df.head())
π Overview
While recent progress in AI and computer vision has been remarkable, there remains a major gap in evaluating causal reasoning over complex visual inputs. Causal3D bridges this gap by providing:
- 19 curated 3D-scene datasets simulating diverse real-world causal phenomena.
- Paired tabular causal graphs and image observations across multiple views and backgrounds.
- Benchmarks for evaluating models in both structured (tabular) and unstructured (image) modalities.
π§© Dataset Structure
Each sub-dataset (scene) contains:
images/
: Rendered images under different camera views and backgrounds.tabular.csv
: Instance-level annotations including object attributes in causal graph.
πΌοΈ Visual Previews
Below are example images from different Causal3D scenes:
![]() parabola |
![]() convex |
|
![]() magnetic |
![]() pendulum |
![]() reflection |
![]() seesaw |
![]() spring |
![]() water_flow |
π― Evaluation Tasks
Causal3D supports a range of causal reasoning tasks, including:
- Causal discovery from image sequences or tables
- Intervention prediction under modified object states or backgrounds
- Counterfactual reasoning across views
- VLM-based causal inference given multimodal prompts
π Benchmark Results
We evaluate a diverse set of methods:
- Classical causal discovery: PC, GES, NOTEARS
- Causal representation learning: CausalVAE, ICM-based encoders
- Vision-Language and Large Language Models: GPT-4V, Claude-3.5, Gemini-1.5
Key Findings:
- As causal structures grow more complex, model performance drops significantly without strong prior assumptions.
- A noticeable performance gap exists between models trained on structured data and those applied directly to visual inputs.