|
--- |
|
license: cc-by-4.0 |
|
language: |
|
- en |
|
size_categories: |
|
- 100K<n<1M |
|
pretty_name: Causal3D |
|
tags: |
|
- Causality |
|
- Computer_Vision |
|
dataset_info: |
|
- config_name: hypothetical_scenes_Hypothetic_v2_linear |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: file_name |
|
dtype: string |
|
- name: metadata |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 2197142 |
|
num_examples: 14368 |
|
download_size: 0 |
|
dataset_size: 2197142 |
|
- config_name: hypothetical_scenes_Hypothetic_v2_nonlinear |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: file_name |
|
dtype: string |
|
- name: metadata |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 1809956 |
|
num_examples: 10000 |
|
download_size: 0 |
|
dataset_size: 1809956 |
|
- config_name: hypothetical_scenes_Hypothetic_v3_fully_connected_linear |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: file_name |
|
dtype: string |
|
- name: metadata |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 1397093 |
|
num_examples: 10000 |
|
download_size: 0 |
|
dataset_size: 1397093 |
|
- config_name: hypothetical_scenes_Hypothetic_v4_linear_full_connected |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: file_name |
|
dtype: string |
|
- name: metadata |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 1699598 |
|
num_examples: 10050 |
|
download_size: 0 |
|
dataset_size: 1699598 |
|
- config_name: hypothetical_scenes_Hypothetic_v4_linear_v |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: file_name |
|
dtype: string |
|
- name: metadata |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 2053379 |
|
num_examples: 10000 |
|
download_size: 0 |
|
dataset_size: 2053379 |
|
- config_name: hypothetical_scenes_Hypothetic_v4_nonlinear_v |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: file_name |
|
dtype: string |
|
- name: metadata |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 2828217 |
|
num_examples: 10000 |
|
download_size: 0 |
|
dataset_size: 2828217 |
|
- config_name: hypothetical_scenes_Hypothetic_v5_linear |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: file_name |
|
dtype: string |
|
- name: metadata |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 1956461 |
|
num_examples: 10000 |
|
download_size: 0 |
|
dataset_size: 1956461 |
|
- config_name: hypothetical_scenes_Hypothetic_v5_linear_full_connected |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: file_name |
|
dtype: string |
|
- name: metadata |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 1955921 |
|
num_examples: 10000 |
|
download_size: 0 |
|
dataset_size: 1955921 |
|
- config_name: hypothetical_scenes_rendered_h3_linear_128P |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: file_name |
|
dtype: string |
|
- name: metadata |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 5425498 |
|
num_examples: 15000 |
|
download_size: 0 |
|
dataset_size: 5425498 |
|
- config_name: hypothetical_scenes_rendered_h3_nonlinear_128P |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: file_name |
|
dtype: string |
|
- name: metadata |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 3239120 |
|
num_examples: 10223 |
|
download_size: 0 |
|
dataset_size: 3239120 |
|
- config_name: hypothetical_scenes_rendered_h5_nonlinear |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: file_name |
|
dtype: string |
|
- name: metadata |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 5459126 |
|
num_examples: 10360 |
|
download_size: 0 |
|
dataset_size: 5459126 |
|
- config_name: real_scenes_Real_Parabola |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: file_name |
|
dtype: string |
|
- name: metadata |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 1323548 |
|
num_examples: 10000 |
|
download_size: 0 |
|
dataset_size: 1323548 |
|
- config_name: real_scenes_Real_magnet_v3 |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: file_name |
|
dtype: string |
|
- name: metadata |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 28397 |
|
num_examples: 481 |
|
download_size: 0 |
|
dataset_size: 28397 |
|
- config_name: real_scenes_Real_magnet_v3_5 |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: file_name |
|
dtype: string |
|
- name: metadata |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 93977 |
|
num_examples: 1503 |
|
download_size: 0 |
|
dataset_size: 93977 |
|
- config_name: real_scenes_Real_parabola_multi_view |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: file_name |
|
dtype: string |
|
- name: metadata |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 0 |
|
num_examples: 0 |
|
download_size: 0 |
|
dataset_size: 0 |
|
- config_name: real_scenes_Real_spring_v3_256P |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: file_name |
|
dtype: string |
|
- name: metadata |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 136325 |
|
num_examples: 450 |
|
download_size: 0 |
|
dataset_size: 136325 |
|
- config_name: real_scenes_Water_flow_scene_render |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: file_name |
|
dtype: string |
|
- name: metadata |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 2792618 |
|
num_examples: 10000 |
|
download_size: 0 |
|
dataset_size: 2792618 |
|
- config_name: real_scenes_convex_len_render_images |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: file_name |
|
dtype: string |
|
- name: metadata |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 72448 |
|
num_examples: 1078 |
|
download_size: 0 |
|
dataset_size: 72448 |
|
- config_name: real_scenes_real_pendulum |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: file_name |
|
dtype: string |
|
- name: metadata |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 2925963 |
|
num_examples: 9999 |
|
download_size: 0 |
|
dataset_size: 2925963 |
|
- config_name: real_scenes_rendered_magnetic_128 |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: file_name |
|
dtype: string |
|
- name: metadata |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 2324526 |
|
num_examples: 8350 |
|
download_size: 0 |
|
dataset_size: 2324526 |
|
- config_name: real_scenes_rendered_reflection_128P |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: file_name |
|
dtype: string |
|
- name: metadata |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 2765222 |
|
num_examples: 9995 |
|
download_size: 0 |
|
dataset_size: 2765222 |
|
- config_name: real_scenes_seesaw_scene_128P |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: file_name |
|
dtype: string |
|
- name: metadata |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 2275814 |
|
num_examples: 10000 |
|
download_size: 0 |
|
dataset_size: 2275814 |
|
- config_name: real_scenes_spring_scene_128P |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: file_name |
|
dtype: string |
|
- name: metadata |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 2547386 |
|
num_examples: 10000 |
|
download_size: 0 |
|
dataset_size: 2547386 |
|
--- |
|
# π§ Causal3D: A Benchmark for Visual Causal Reasoning |
|
|
|
**Causal3D** is a comprehensive benchmark designed to evaluate modelsβ abilities to uncover *latent causal relations* from structured and visual data. This dataset integrates **3D-rendered scenes** with **tabular causal annotations**, providing a unified testbed for advancing *causal discovery*, *causal representation learning*, and *causal reasoning* with **vision-language models (VLMs)** and **large language models (LLMs)**. |
|
|
|
## π Usage |
|
|
|
#### πΉ Option 1: Load from Hugging Face |
|
|
|
You can easily load a specific scene using the Hugging Face `datasets` library: |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset( |
|
"LLDDSS/Causal3D", |
|
name="real_scenes_Real_Parabola", |
|
download_mode="force_redownload", # Optional: force re-download |
|
trust_remote_code=True # Required for custom dataset loading |
|
) |
|
|
|
print(dataset) |
|
``` |
|
|
|
#### πΉ Option 2: Download via [**Kaggle**](https://www.kaggle.com/datasets/dsliu0011/causal3d-image-dataset) + Croissant |
|
``` |
|
import mlcroissant as mlc |
|
import pandas as pd |
|
|
|
# Load the dataset metadata from Kaggle |
|
croissant_dataset = mlc.Dataset( |
|
"https://www.kaggle.com/datasets/dsliu0011/causal3d-image-dataset/croissant/download" |
|
) |
|
|
|
# List available record sets |
|
record_sets = croissant_dataset.metadata.record_sets |
|
print(record_sets) |
|
|
|
# Load records from the first record set |
|
df = pd.DataFrame(croissant_dataset.records(record_set=record_sets[0].uuid)) |
|
print(df.head()) |
|
``` |
|
|
|
--- |
|
|
|
## π Overview |
|
|
|
While recent progress in AI and computer vision has been remarkable, there remains a major gap in evaluating causal reasoning over complex visual inputs. **Causal3D** bridges this gap by providing: |
|
|
|
- **19 curated 3D-scene datasets** simulating diverse real-world causal phenomena. |
|
- Paired **tabular causal graphs** and **image observations** across multiple views and backgrounds. |
|
- Benchmarks for evaluating models in both **structured** (tabular) and **unstructured** (image) modalities. |
|
|
|
--- |
|
|
|
## π§© Dataset Structure |
|
|
|
Each sub-dataset (scene) contains: |
|
|
|
|
|
- `images/`: Rendered images under different camera views and backgrounds. |
|
- `tabular.csv`: Instance-level annotations including object attributes in causal graph. |
|
|
|
|
|
## πΌοΈ Visual Previews |
|
|
|
Below are example images from different Causal3D scenes: |
|
|
|
<table> |
|
<tr> |
|
<td align="center"> |
|
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/parabola.png" width="250"/><br/>parabola |
|
</td> |
|
<td align="center"> |
|
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/convex.png" width="250"/><br/>convex |
|
</td> |
|
</tr> |
|
<tr> |
|
<td align="center"> |
|
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/magnetic.png" width="200"/><br/>magnetic |
|
</td> |
|
<td align="center"> |
|
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/pendulum.png" width="200"/><br/>pendulum |
|
</td> |
|
<td align="center"> |
|
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/reflection.png" width="200"/><br/>reflection |
|
</td> |
|
</tr> |
|
<tr> |
|
<td align="center"> |
|
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/seesaw.png" width="200"/><br/>seesaw |
|
</td> |
|
<td align="center"> |
|
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/spring.png" width="200"/><br/>spring |
|
</td> |
|
<td align="center"> |
|
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/water_flow.png" width="200"/><br/>water_flow |
|
</td> |
|
</tr> |
|
</table> |
|
|
|
<!-- - `causal_graph.json`: Ground-truth causal structure (as adjacency matrix or graph). |
|
- `view_info.json`: Camera/viewpoint metadata. |
|
- `split.json`: Recommended train/val/test splits for benchmarking. --> |
|
|
|
--- |
|
|
|
## π― Evaluation Tasks |
|
|
|
Causal3D supports a range of causal reasoning tasks, including: |
|
|
|
- **Causal discovery** from image sequences or tables |
|
- **Intervention prediction** under modified object states or backgrounds |
|
- **Counterfactual reasoning** across views |
|
- **VLM-based causal inference** given multimodal prompts |
|
|
|
--- |
|
|
|
## π Benchmark Results |
|
|
|
We evaluate a diverse set of methods: |
|
|
|
- **Classical causal discovery**: PC, GES, NOTEARS |
|
- **Causal representation learning**: CausalVAE, ICM-based encoders |
|
- **Vision-Language and Large Language Models**: GPT-4V, Claude-3.5, Gemini-1.5 |
|
|
|
**Key Findings**: |
|
|
|
- As causal structures grow more complex, **model performance drops significantly** without strong prior assumptions. |
|
- A noticeable performance gap exists between models trained on structured data and those applied directly to visual inputs. |
|
|
|
--- |
|
|
|
|
|
|
|
<!-- ## π Example Use Case |
|
|
|
```python |
|
from causal3d import load_scene_data |
|
|
|
scene = "SpringPendulum" |
|
data = load_scene_data(scene, split="train") |
|
images = data["images"] |
|
metadata = data["table"] |
|
graph = data["causal_graph"] --> |