Causal3D / README.md
DsL
update readme
d8f7f26
|
raw
history blame
11.8 kB
---
license: cc-by-4.0
language:
- en
size_categories:
- 100K<n<1M
pretty_name: Causal3D
tags:
- Causality
- Computer_Vision
dataset_info:
- config_name: hypothetical_scenes_Hypothetic_v2_linear
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2197142
num_examples: 14368
download_size: 0
dataset_size: 2197142
- config_name: hypothetical_scenes_Hypothetic_v2_nonlinear
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 1809956
num_examples: 10000
download_size: 0
dataset_size: 1809956
- config_name: hypothetical_scenes_Hypothetic_v3_fully_connected_linear
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 1397093
num_examples: 10000
download_size: 0
dataset_size: 1397093
- config_name: hypothetical_scenes_Hypothetic_v4_linear_full_connected
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 1699598
num_examples: 10050
download_size: 0
dataset_size: 1699598
- config_name: hypothetical_scenes_Hypothetic_v4_linear_v
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2053379
num_examples: 10000
download_size: 0
dataset_size: 2053379
- config_name: hypothetical_scenes_Hypothetic_v4_nonlinear_v
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2828217
num_examples: 10000
download_size: 0
dataset_size: 2828217
- config_name: hypothetical_scenes_Hypothetic_v5_linear
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 1956461
num_examples: 10000
download_size: 0
dataset_size: 1956461
- config_name: hypothetical_scenes_Hypothetic_v5_linear_full_connected
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 1955921
num_examples: 10000
download_size: 0
dataset_size: 1955921
- config_name: hypothetical_scenes_rendered_h3_linear_128P
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 5425498
num_examples: 15000
download_size: 0
dataset_size: 5425498
- config_name: hypothetical_scenes_rendered_h3_nonlinear_128P
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 3239120
num_examples: 10223
download_size: 0
dataset_size: 3239120
- config_name: hypothetical_scenes_rendered_h5_nonlinear
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 5459126
num_examples: 10360
download_size: 0
dataset_size: 5459126
- config_name: real_scenes_Real_Parabola
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 1323548
num_examples: 10000
download_size: 0
dataset_size: 1323548
- config_name: real_scenes_Real_magnet_v3
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 28397
num_examples: 481
download_size: 0
dataset_size: 28397
- config_name: real_scenes_Real_magnet_v3_5
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 93977
num_examples: 1503
download_size: 0
dataset_size: 93977
- config_name: real_scenes_Real_parabola_multi_view
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 0
num_examples: 0
download_size: 0
dataset_size: 0
- config_name: real_scenes_Real_spring_v3_256P
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 136325
num_examples: 450
download_size: 0
dataset_size: 136325
- config_name: real_scenes_Water_flow_scene_render
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2792618
num_examples: 10000
download_size: 0
dataset_size: 2792618
- config_name: real_scenes_convex_len_render_images
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 72448
num_examples: 1078
download_size: 0
dataset_size: 72448
- config_name: real_scenes_real_pendulum
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2925963
num_examples: 9999
download_size: 0
dataset_size: 2925963
- config_name: real_scenes_rendered_magnetic_128
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2324526
num_examples: 8350
download_size: 0
dataset_size: 2324526
- config_name: real_scenes_rendered_reflection_128P
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2765222
num_examples: 9995
download_size: 0
dataset_size: 2765222
- config_name: real_scenes_seesaw_scene_128P
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2275814
num_examples: 10000
download_size: 0
dataset_size: 2275814
- config_name: real_scenes_spring_scene_128P
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2547386
num_examples: 10000
download_size: 0
dataset_size: 2547386
---
# 🧠 Causal3D: A Benchmark for Visual Causal Reasoning
**Causal3D** is a comprehensive benchmark designed to evaluate models’ abilities to uncover *latent causal relations* from structured and visual data. This dataset integrates **3D-rendered scenes** with **tabular causal annotations**, providing a unified testbed for advancing *causal discovery*, *causal representation learning*, and *causal reasoning* with **vision-language models (VLMs)** and **large language models (LLMs)**.
## πŸ“š Usage
#### πŸ”Ή Option 1: Load from Hugging Face
You can easily load a specific scene using the Hugging Face `datasets` library:
```python
from datasets import load_dataset
dataset = load_dataset(
"LLDDSS/Causal3D",
name="real_scenes_Real_Parabola",
download_mode="force_redownload", # Optional: force re-download
trust_remote_code=True # Required for custom dataset loading
)
print(dataset)
```
#### πŸ”Ή Option 2: Download via [**Kaggle**](https://www.kaggle.com/datasets/dsliu0011/causal3d-image-dataset) + Croissant
```
import mlcroissant as mlc
import pandas as pd
# Load the dataset metadata from Kaggle
croissant_dataset = mlc.Dataset(
"https://www.kaggle.com/datasets/dsliu0011/causal3d-image-dataset/croissant/download"
)
# List available record sets
record_sets = croissant_dataset.metadata.record_sets
print(record_sets)
# Load records from the first record set
df = pd.DataFrame(croissant_dataset.records(record_set=record_sets[0].uuid))
print(df.head())
```
---
## πŸ“Œ Overview
While recent progress in AI and computer vision has been remarkable, there remains a major gap in evaluating causal reasoning over complex visual inputs. **Causal3D** bridges this gap by providing:
- **19 curated 3D-scene datasets** simulating diverse real-world causal phenomena.
- Paired **tabular causal graphs** and **image observations** across multiple views and backgrounds.
- Benchmarks for evaluating models in both **structured** (tabular) and **unstructured** (image) modalities.
---
## 🧩 Dataset Structure
Each sub-dataset (scene) contains:
- `images/`: Rendered images under different camera views and backgrounds.
- `tabular.csv`: Instance-level annotations including object attributes in causal graph.
## πŸ–ΌοΈ Visual Previews
Below are example images from different Causal3D scenes:
<table>
<tr>
<td align="center">
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/parabola.png" width="250"/><br/>parabola
</td>
<td align="center">
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/convex.png" width="250"/><br/>convex
</td>
</tr>
<tr>
<td align="center">
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/magnetic.png" width="200"/><br/>magnetic
</td>
<td align="center">
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/pendulum.png" width="200"/><br/>pendulum
</td>
<td align="center">
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/reflection.png" width="200"/><br/>reflection
</td>
</tr>
<tr>
<td align="center">
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/seesaw.png" width="200"/><br/>seesaw
</td>
<td align="center">
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/spring.png" width="200"/><br/>spring
</td>
<td align="center">
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/water_flow.png" width="200"/><br/>water_flow
</td>
</tr>
</table>
<!-- - `causal_graph.json`: Ground-truth causal structure (as adjacency matrix or graph).
- `view_info.json`: Camera/viewpoint metadata.
- `split.json`: Recommended train/val/test splits for benchmarking. -->
---
## 🎯 Evaluation Tasks
Causal3D supports a range of causal reasoning tasks, including:
- **Causal discovery** from image sequences or tables
- **Intervention prediction** under modified object states or backgrounds
- **Counterfactual reasoning** across views
- **VLM-based causal inference** given multimodal prompts
---
## πŸ“Š Benchmark Results
We evaluate a diverse set of methods:
- **Classical causal discovery**: PC, GES, NOTEARS
- **Causal representation learning**: CausalVAE, ICM-based encoders
- **Vision-Language and Large Language Models**: GPT-4V, Claude-3.5, Gemini-1.5
**Key Findings**:
- As causal structures grow more complex, **model performance drops significantly** without strong prior assumptions.
- A noticeable performance gap exists between models trained on structured data and those applied directly to visual inputs.
---
<!-- ## πŸ” Example Use Case
```python
from causal3d import load_scene_data
scene = "SpringPendulum"
data = load_scene_data(scene, split="train")
images = data["images"]
metadata = data["table"]
graph = data["causal_graph"] -->