# Path Configuration | |
from tools.preprocess import * | |
# Processing context | |
trait = "Age-Related_Macular_Degeneration" | |
cohort = "GSE67899" | |
# Input paths | |
in_trait_dir = "../DATA/GEO/Age-Related_Macular_Degeneration" | |
in_cohort_dir = "../DATA/GEO/Age-Related_Macular_Degeneration/GSE67899" | |
# Output paths | |
out_data_file = "./output/preprocess/1/Age-Related_Macular_Degeneration/GSE67899.csv" | |
out_gene_data_file = "./output/preprocess/1/Age-Related_Macular_Degeneration/gene_data/GSE67899.csv" | |
out_clinical_data_file = "./output/preprocess/1/Age-Related_Macular_Degeneration/clinical_data/GSE67899.csv" | |
json_path = "./output/preprocess/1/Age-Related_Macular_Degeneration/cohort_info.json" | |
# STEP1 | |
from tools.preprocess import * | |
# 1. Identify the paths to the SOFT file and the matrix file | |
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) | |
# 2. Read the matrix file to obtain background information and sample characteristics data | |
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] | |
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] | |
background_info, clinical_data = get_background_and_clinical_data( | |
matrix_file, | |
background_prefixes, | |
clinical_prefixes | |
) | |
# 3. Obtain the sample characteristics dictionary from the clinical dataframe | |
sample_characteristics_dict = get_unique_values_by_row(clinical_data) | |
# 4. Explicitly print out all the background information and the sample characteristics dictionary | |
print("Background Information:") | |
print(background_info) | |
print("Sample Characteristics Dictionary:") | |
print(sample_characteristics_dict) | |
# Step 1: Determine if gene expression data is available | |
# Based on the background info mentioning TGF-beta inhibitors and typical gene regulatory factors, | |
# we assume this dataset likely contains gene expression data. Hence: | |
is_gene_available = True | |
# Step 2: Identify rows for trait, age, and gender. | |
# The sample characteristics dictionary does not mention AMD status, age, or gender. | |
# Therefore, we set them to None. | |
trait_row = None | |
age_row = None | |
gender_row = None | |
# Define data type conversion functions. | |
# Although the data is unavailable, we still provide these to | |
# maintain the required function signatures. | |
def convert_trait(value: str): | |
""" | |
Convert trait (AMD) values to binary (0 or 1). | |
For this study, AMD = 1 and Non-AMD = 0. | |
But since trait data is not found in the dictionary, we will return None. | |
""" | |
return None | |
def convert_age(value: str): | |
""" | |
Convert age values to continuous. Extract numerical part if possible. | |
Since age data is not found in this dataset, always return None. | |
""" | |
return None | |
def convert_gender(value: str): | |
""" | |
Convert gender values to binary (female=0, male=1). | |
Since gender data is not found in this dataset, always return None. | |
""" | |
return None | |
# Step 3: Conduct initial filtering and save metadata. | |
# Trait data availability is based on whether trait_row is None. | |
is_trait_available = (trait_row is not None) | |
validate_and_save_cohort_info( | |
is_final=False, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=is_gene_available, | |
is_trait_available=is_trait_available | |
) | |
# Step 4: We skip clinical feature extraction because trait_row is None (no trait data available). | |
# STEP3 | |
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. | |
gene_data = get_genetic_data(matrix_file) | |
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. | |
print(gene_data.index[:20]) | |
# Based on observation, these numeric IDs are not standard human gene symbols and likely require mapping. | |
print("requires_gene_mapping = True") | |
# STEP5 | |
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. | |
gene_annotation = get_gene_annotation(soft_file) | |
# 2. Use the 'preview_df' function from the library to preview the data and print out the results. | |
print("Gene annotation preview:") | |
print(preview_df(gene_annotation)) | |
# STEP6: Gene Identifier Mapping | |
# 1. Decide which columns store the consistent ID and gene symbol. | |
# From the annotation preview and the gene_data index, we identify: | |
# - "ID" as the probe identifier column | |
# - "GENE_SYMBOL" as the gene symbol column | |
# 2. Get a gene mapping dataframe | |
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="GENE_SYMBOL") | |
# 3. Convert probe-level measurements to gene expression data | |
gene_data = apply_gene_mapping(gene_data, mapping_df) | |
# Optional: Print shape for verification | |
print("Gene expression data shape after mapping:", gene_data.shape) | |
# STEP 7: Data Normalization and Linking | |
# In this dataset, we determined in Step 2 that trait data is not available (trait_row = None). | |
# Therefore, we cannot link clinical and genetic data or perform trait-based processing. | |
# Nonetheless, we can still normalize probe-level data to standard gene symbols and finalize validation. | |
# 1. Normalize gene symbols in the obtained gene expression data | |
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) | |
normalized_gene_data.to_csv(out_gene_data_file, index=True) | |
# 2. Since trait data is missing, skip linking clinical and genetic data, | |
# skip missing-value handling and bias detection for the trait. | |
# 3. Conduct final validation and record info. | |
# Since trait data is unavailable, set is_trait_available=False, | |
# pass a dummy/empty DataFrame and is_biased=False (it won't be used). | |
dummy_df = pd.DataFrame() | |
is_usable = validate_and_save_cohort_info( | |
is_final=True, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=True, | |
is_trait_available=False, | |
is_biased=False, | |
df=dummy_df, | |
note="No trait data found; skipped clinical-linking steps." | |
) | |
# 4. If the dataset were usable, save. In this scenario, it's not usable due to missing trait data. | |
if is_usable: | |
dummy_df.to_csv(out_data_file, index=True) |