Liu-Hy's picture
Add files using upload-large-folder tool
187fbda verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Arrhythmia"
cohort = "GSE182600"
# Input paths
in_trait_dir = "../DATA/GEO/Arrhythmia"
in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE182600"
# Output paths
out_data_file = "./output/preprocess/1/Arrhythmia/GSE182600.csv"
out_gene_data_file = "./output/preprocess/1/Arrhythmia/gene_data/GSE182600.csv"
out_clinical_data_file = "./output/preprocess/1/Arrhythmia/clinical_data/GSE182600.csv"
json_path = "./output/preprocess/1/Arrhythmia/cohort_info.json"
# STEP 1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
background_prefixes,
clinical_prefixes
)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# Step 1: Determine if gene expression data is available
is_gene_available = True # Based on the background info describing "genome-wide gene expression"
# Step 2: Identify trait/age/gender rows and define data conversion functions
trait_row = 0 # Row containing disease states, including "Arrhythmia"
age_row = 1 # Row containing age
gender_row = 2 # Row containing gender
def convert_trait(value: str) -> int:
"""
Convert the 'disease state' string to a binary value.
1 if it indicates 'Arrhythmia', else 0.
"""
# Extract the part after "disease state:"
parts = value.split(":")
if len(parts) < 2:
return None
disease_str = parts[1].strip().lower()
return 1 if disease_str == "arrhythmia" else 0
def convert_age(value: str) -> float:
"""
Convert the 'age' string to a float.
Return None if conversion fails.
"""
parts = value.split(":")
if len(parts) < 2:
return None
try:
return float(parts[1].strip())
except ValueError:
return None
def convert_gender(value: str) -> int:
"""
Convert the 'gender' string to a binary value.
Female -> 0, Male -> 1, None if unknown.
"""
parts = value.split(":")
if len(parts) < 2:
return None
gender_str = parts[1].strip().lower()
if gender_str == "f":
return 0
elif gender_str == "m":
return 1
else:
return None
# Step 3: Determine if trait data is available
is_trait_available = (trait_row is not None)
# Perform initial filtering and save metadata
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# Step 4: If trait is available, extract clinical features and save
if trait_row is not None:
# Assume 'clinical_data' is already loaded as a DataFrame in the environment
selected_clinical_df = geo_select_clinical_features(
clinical_data,
trait="Trait",
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
print("Preview of selected clinical dataframe:", preview_df(selected_clinical_df))
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# The listed identifiers (e.g., "ILMN_...") are Illumina probe IDs, not standard human gene symbols.
# Therefore, they require mapping to gene symbols.
requires_gene_mapping = True
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping
# 1. Identify which columns from the gene_annotation match the gene expression IDs and the gene symbols
prob_col = "ID" # column in gene_annotation matching the probe ID (e.g., "ILMN_...")
symbol_col = "Symbol" # column in gene_annotation storing the gene symbol
# 2. Generate a mapping dataframe using the library function
mapping_df = get_gene_mapping(gene_annotation, prob_col=prob_col, gene_col=symbol_col)
# 3. Apply the mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(gene_data, mapping_df)
# STEP 7: Data Normalization and Linking
# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print(f"Saved normalized gene data to {out_gene_data_file}")
# 2. Link the clinical and genetic data on sample IDs
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
# 3. Handle missing values in the linked data
linked_data = handle_missing_values(linked_data, trait_col="Trait")
# 4. Determine whether the trait/demographic features are severely biased
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait="Trait")
# 5. Conduct final quality validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Trait data and gene data successfully linked."
)
# 6. If the dataset is deemed usable, save the final linked data as a CSV file
if is_usable:
linked_data.to_csv(out_data_file)
print(f"Saved final linked data to {out_data_file}")
else:
print("Dataset was not deemed usable; final linked data not saved.")