Liu-Hy's picture
Add files using upload-large-folder tool
0a0878d verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Intellectual_Disability"
cohort = "GSE100680"
# Input paths
in_trait_dir = "../DATA/GEO/Intellectual_Disability"
in_cohort_dir = "../DATA/GEO/Intellectual_Disability/GSE100680"
# Output paths
out_data_file = "./output/preprocess/3/Intellectual_Disability/GSE100680.csv"
out_gene_data_file = "./output/preprocess/3/Intellectual_Disability/gene_data/GSE100680.csv"
out_clinical_data_file = "./output/preprocess/3/Intellectual_Disability/clinical_data/GSE100680.csv"
json_path = "./output/preprocess/3/Intellectual_Disability/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Yes, this dataset appears to contain gene expression data based on the background information
# which mentions measuring APP expression levels and genome-wide effects
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# Trait (DS vs Control) can be inferred from field 3 (description)
trait_row = 3
# Age is in field 2
age_row = 2
# Gender is not available
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value):
"""Convert description to binary indicating if sample is DS (1) or control (0)"""
if not isinstance(value, str):
return None
value = value.split(': ')[-1]
if 'DS Clone' in value:
return 1
elif 'Euploid Clone' in value:
return 0
return None
def convert_age(value):
"""Convert age string to numeric days"""
if not isinstance(value, str):
return None
value = value.split(': ')[-1]
if 'Day' in value:
try:
return float(value.replace('Day ', ''))
except:
return None
return None
def convert_gender(value):
"""Not used since gender data is not available"""
return None
# 3. Save Initial Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Extract Clinical Features
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
preview_df(clinical_features)
# Save clinical features
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 row IDs
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
# These identifiers are ILMN (Illumina) probe IDs, not gene symbols
# The ILMN_ prefix indicates they are from an Illumina microarray platform
# They need to be mapped to official gene symbols
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)
# Drop rows where Symbol is null or contains phage/virus/bacteria
gene_metadata = gene_metadata[gene_metadata['Symbol'].notna()]
gene_metadata = gene_metadata[~gene_metadata['Symbol'].str.contains('phage|virus|bacteria',
case=False, na=False)]
# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())
# Look at general data statistics
print("\nData shape:", gene_metadata.shape)
# Preview the first few rows
print("\nPreview of the annotation data:")
print(json.dumps(preview_df(gene_metadata), indent=2))
# Get gene mapping data from annotation
# 'ID' column matches the ILMN probe IDs in expression data
# 'Symbol' column contains the gene symbols
mapping_data = get_gene_mapping(gene_metadata, 'ID', 'Symbol')
# Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# Get clinical features
clinical_features = geo_select_clinical_features(
clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# Early exit if trait values are all NaN
if linked_data[trait].isna().all():
is_biased = True
linked_data = None
else:
# 4. Judge whether features are biased and remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
note = "Dataset contains gene expression data from pediatric AML samples, focusing on Down syndrome cases versus other AML types."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# 6. Save the linked data only if it's usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)